Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (4): 1014-1020    DOI: 10.11720/wtyht.2021.1297
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
西湖凹陷平湖组砂泥岩岩性神经网络地震预测
张鹏飞(), 张世晖()
中国地质大学(武汉) 地球物理与空间信息学院,湖北 武汉 430074
Neural network seismic prediction of sand and mudstone lithology of Pinghu Formation in Xihu Sag
ZHANG Peng-Fei(), ZHANG Shi-Hui()
Institute of Geophysics and Geomatics,China University of Geosciences(Wuhan),Wuhan 430074,China
全文: PDF(5329 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

传统的地震波阻抗反演方法存在岩性分辨能力不高和多解性问题,反演结果难以满足精细刻画岩性分布规律的要求。本文通过构建包含岩性和波阻抗信息的归一化后的拟伽马曲线作为岩性指示曲线,利用神经网络方法,将地震数据转化为与岩性关系更密切的伽马数据体。通过神经网络地震反演,得到砂泥岩岩性反演数据体。将该方法用于西湖凹陷平湖组砂泥岩岩性反演,与传统方法相比,泥岩厚度预测精度达93%,较为准确地刻画了地下砂泥岩分布情况,为后期的油气勘探提供依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鹏飞
张世晖
关键词 拟伽马曲线神经网络反演砂泥岩分布预测    
Abstract

The traditional seismic P-wave impedance inversion method has the problems of low lithologic resolution and multi-solution,and it is hence difficult for the inversion results to meet the requirements of finely characterizing the lithologic distribution.In this paper,by constructing a normalized pseudo-gamma curve containing lithology and P-wave impedance information as a lithology index indicator curve,the neural network method is used to convert seismic data into a gamma data volume which is more closely related to lithology.Through the neural network seismic inversion,the sand and mudstone lithologic inversion data volume is obtained.This method was used to invert the sand and mudstone lithology of the Pinghu Formation in the Xihu Sag.Compared with traditional methods,the prediction accuracy of the mudstone thickness is up to 93%,which more accurately characterizes the distribution of underground sand and mudstone,and provides a basis for later oil and gas exploration.

Key wordspseudo-gamma curve    neural network seismic inversion    lithology prediction
收稿日期: 2020-06-18      修回日期: 2021-06-09      出版日期: 2021-08-20
ZTFLH:  P631  
基金资助:国家重点研发计划项目(2018YFC0604303);国家重大科技专项项目(2016ZX05027-001-005)
通讯作者: 张世晖
作者简介: 张鹏飞(1996-),男,中国地质大学(武汉)硕士在读,主要从事地球物理地震资料处理与解释工作。Email: symdwjz@foxmail.com
引用本文:   
张鹏飞, 张世晖. 西湖凹陷平湖组砂泥岩岩性神经网络地震预测[J]. 物探与化探, 2021, 45(4): 1014-1020.
ZHANG Peng-Fei, ZHANG Shi-Hui. Neural network seismic prediction of sand and mudstone lithology of Pinghu Formation in Xihu Sag. Geophysical and Geochemical Exploration, 2021, 45(4): 1014-1020.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1297      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I4/1014
Fig.1  测井约束叠后地震神经网络反演示意
Fig.2  岩性和伽马、纵波速度交会
Fig.3  两口井相对伽马曲线建立前后的对比结果
Fig.4  伽马归一化处理前(a)后(b)与波阻抗交会图对比
Fig.5  拟波阻抗曲线与岩性概率交会
Fig.6  神经网络算法示意
Fig.7  神经网络井震反演结果和实际测井波阻抗曲线对比
Fig.8  钻井岩性及井旁反演结果对比
Fig.9  平湖组井旁烃源岩分布剖面(黄色为有利烃源岩(TOC丰度>1)区段)
Fig.10  西湖凹陷平湖组泥岩厚度切片
a—平湖组上段泥岩厚度切片;b—平湖组中段泥岩厚度切片;c—平湖组下段泥岩厚度切片
井名 实测/m 泥岩厚度反演/m 相对误差
B1 508.4 542.5 +6.71%
B2 417.0 442.6 +6.01%
B3 463.1 493.2 +6.45%
Table 1  反演泥岩厚度与实测泥岩厚度对比
[1] Hampson D P, Todorov T, Russell B. Use of multi-attribute transforms to predict log properties from seismic data[J]. Geophysics, 2001,66(1):220-236.
[2] 张绍红, 林昌荣. 砂泥岩地层概率神经网络岩性反演技术应用研究[J]. 西安石油大学学报:自然科学版, 2008,23(4):1-4.
[2] Zhang S H, Lin C R. Application of probabilistic neural network in the lithology inversion of sandstone-mudstone strata[J]. Journal of Xi'an Shiyou University:Natural Science Edition, 2008,23(4):1-4.
[3] Tahmasebi P, Hezarkhani A. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation[J]. Computers and Geosciences, 2012,42:18-27.
[4] 余为维, 冯磊, 杜艳艳, 等. 测井约束与神经网络联合反演储层预测技术[J]. 地球物理学进展, 2016,31(5):2232-2238.
[4] Yu W W, Feng L, Du Y Y, et al. Reservoir prediction technology based on joint inversion of logging-constrained and neural network[J]. Progress in Geophysics, 2016,31(5):2232-2238.
[5] 赵鹏飞, 刘财, 冯晅, 等. 基于神经网络的随机地震反演方法[J]. 地球物理学报, 2019,62(3):1172-1180.
[5] Zhao P F, Liu C, Feng X, et al. Stochastic seismic inversion based on neural network[J]. Chinese Journal of Geophysics, 2019,62(3):1172-1180.
[6] 黄福强, 李斌, 张异彪, 等. 西湖凹陷斜缆采集关键参数优选研究[J]. 物探与化探, 2020,44(4):770-777.
[6] Huang F Q, Li B, Zhang Y B, et al. Optimizing the key acquisition parameters of variable-depth streamer in Xihu sag[J]. Geophysical and Geochemical Exploration, 2020,44(4):770-777.
[7] 杨彩虹, 高兆红, 蒋一鸣, 等. 西湖凹陷平湖斜坡带始新统平湖组碎屑沉积体系再认识[J]. 石油天然气学报, 2013,35(9):11-14.
[7] Yang C H, Gao Z H, Jiang Y M, et al. Reunderstanding of clastic rock sedimentary facies of Eocene Pinghu formation in Pinghu Slope of Xihu Sag[J]. Journal of Oil and Gas Technology, 2013,35(9):11-14.
[8] 田杨, 叶加仁, 雷闯, 等. 断陷盆地海陆过渡相烃源岩发育模式:以西湖凹陷平湖组为例[J]. 地球科学, 2019,44(3):898-908.
[8] Tian Y, Ye J R, Lei C, et al. Development model for source rock of marine-continental transitional face in faulted Basins:A case study of Pinghu formation in Xihu Sag[J]. Earth Science, 2019,44(3):898-908.
[9] 苏奥, 陈红汉, 胡飞, 等. 西湖凹陷中央构造带中南部油气成藏条件、特征及富集规律[J]. 地质科技情报, 2015,34(2):123-129.
[9] Su A, Chen H H, Hu F, et al. Conditions,characteristics and enrichment regulation of oil and gas accumulation of the South central of central anticlinal zone in the Xihu Sag,East China Sea Basin[J]. Geological Science and Technology Information, 2015,34(2):123-129.
[10] 付志方. 地震储层预测技术及应用研究——以西湖凹陷孔雀亭地区为例[D]. 北京:中国地质大学(北京), 2007.
[10] Fu Z F. Techniques and applied studying of reservoir rrediction based on seismic:take Kongqueting area of Xihu depression as an example[D].Beijing:China University of Geosciences(Beijing), 2007.
[11] 秦兰芝, 徐志星, 刁慧, 等. 西湖凹陷烃源岩地震反演评价与预测[J]. 中国石油和化工标准与质量, 2017,37(16):66-67, 69.
[11] Qin L Z, Xu Z X, Diao H, et al. Seismic inversion evaluation and prediction of hydrocarbon source rocks in Xihu Sag[J]. China Petroleum and Chemical Standard and Quality, 2017,37(16):66-67,69.
[12] 王亚, 易远元, 王成泉, 等. 叠后反演技术在杨税务潜山裂缝孔隙型储层预测中的应用[J]. 物探与化探, 2020,44(5):1208-1214.
[12] Wang Y, Yi Y Y, Wang C Q, et al. The application of post-stack inversion technology to the prediction of fracture and pore reservoir in Yangshuiwu buried hill[J]. Geophysical and Geochemical Exploration, 2020,44(5):1208-1214.
[13] 侯伯刚, 刘文岭, 罗娜. 地震反演中测井数据的预处理[J]. 物探与化探, 2009,33(3):331-336.
[13] Hou B G, Liu W L, Luo N. The preprocessing of well log data for seismic inversion[J]. Geophysical and Geochemical Exploration, 2009,33(3):331-336.
[14] 付康伟, 张学强, 彭炎. BP神经网络算法在陆域天然气水合物成藏预测中的应用[J]. 物探与化探, 2019,43(3):486-493.
[14] Fu K W, Zhang X Q, Peng Y. The application of BP neural network algorithm to the prediction of terrestrial gas hydrate accumulation[J]. Geophysical and Geochemical Exploration, 2019,43(3):486-493.
[15] Van der Baan, Christian Jutten M. Neural networks in geophysical applications[J]. Geophysics, 2000,65(4):1032-1047.
[16] Manoj C, Nagarajan N. The application of artificial neural networks to magnetotelluric time-series analysis[J]. Geophysical Journal International, 2003,153(2):409-423.
[17] 蔡华, 张建培. 东海西湖凹陷平湖斜坡带断层特征及其封闭性[J]. 海洋地质前沿, 2013,29(4):20-26.
[17] Cai H, Zhang J C. Characteristics of faults on the Pinghu Slope of Xihu Sag,the east China Sea Shelf basin and their sealing capacity[J]. Marine Geology Frontiers, 2013,29(4):20-26.
[18] 庞崇友, 张亚东, 章辉若, 等. 地质统计反演在苏里格气田致密薄砂体预测中的应用[J]. 物探与化探, 2017,41(1):16-21.
[18] Pang C Y, Zhang Y D, Zhang H R, et al. The application of geostatistics inversion to prediction of compact and thin sand body in Sulige gas field[J]. Geophysical and Geochemical Exploration, 2017,41(1):16-21.
[1] 赵宝峰, 汪启年, 郭信, 官大维, 陈同刚, 方雯. 汝城盆地深部构造及地热资源赋存潜力——基于重力与AMT探测的认识[J]. 物探与化探, 2023, 47(5): 1147-1156.
[2] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
[3] 常小鹏, 陈亮, 张翔, 张凌霄, 朱樟柳, 乔衍溢. 基于不同规范的重力仪双程往返零漂率计算分析[J]. 物探与化探, 2023, 47(5): 1307-1315.
[4] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[5] 周慧, 孙成禹, 刘英昌, 蔡瑞乾. 基于DC-UNet卷积神经网络的强噪声压制方法[J]. 物探与化探, 2023, 47(5): 1288-1297.
[6] 李栋, 朱博华. 基于上覆地层频率约束的匹配追踪强反射层分离方法[J]. 物探与化探, 2023, 47(5): 1261-1272.
[7] 席宇何, 王洪华, 王欲成, 吴祺铭. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5): 1250-1260.
[8] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[9] 项诸宝, 张大洲, 朱德兵, 李明智, 熊章强. 不同骨料混凝土模型中瑞利波传播特性研究[J]. 物探与化探, 2023, 47(5): 1226-1235.
[10] 张帆, 冯国瑞, 戚庭野, 余传涛, 张新军, 王超宇, 杜孙稳, 赵德康. 瞬变电磁法勘探煤矿不同层间距双层积水采空区的可行性研究[J]. 物探与化探, 2023, 47(5): 1215-1225.
[11] 游希然, 张继锋, 石宇. 基于人工神经网络的瞬变电磁成像方法[J]. 物探与化探, 2023, 47(5): 1206-1214.
[12] 张利振, 孙成禹, 王志农, 李世中, 焦峻峰, 颜廷容. 面波信息约束的初至波走时层析反演方法[J]. 物探与化探, 2023, 47(5): 1198-1205.
[13] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[14] 黄彦庆. 川东北元坝地区致密砂岩多产状裂缝刻画[J]. 物探与化探, 2023, 47(5): 1189-1197.
[15] 杨海, 徐学义, 熊盛青, 杨雪, 高卫宏, 范正国, 贾志业. 凤太矿集区航空地球物理异常特征及找矿方向[J]. 物探与化探, 2023, 47(5): 1157-1168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com