Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (6): 1320-1325    DOI: 10.11720/wtyht.2019.0008
  方法研究·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
时移电阻率法归一化数据反演分辨电阻率结构微小变化
马欢1, 张洪洋2, 郭越1, 雷阳3, 谭捍东4, 吴萍萍1, 张浩楠1, 席彪1
1. 防灾科技学院 地球科学学院,河北 廊坊 065201
2. 中海油田服务股份有限公司 油田技术事业部资料解释中心,河北 廊坊 065201
3. 核工业二〇三研究所 地质勘查院,陕西 咸阳 712000
4. 中国地质大学(北京) 地球物理与信息技术学院,北京 100083
The normalized data inversion of time-lapse resistivity method for resolving small resistivity changes
Huan MA1, Hong-Yang ZHANG2, Yue GUO1, Yang LEI3, Han-Dong TAN4, Ping-Ping WU1, Hao-Nan ZHANG1, Biao XI1
1. School of Earth Science, Institute of Disaster Prevention Science and Technology, Langfang 065201, China
2. Data Processing Interpretation Center of Well-Tech, China Oilfield Services Limited, Langfang 065201, China
3. Department of Geological Survey, No. 203 Research Institute of CNNC, Xianyang 712000, China
4. Geophysics and Information Technology Academy, China University of Geosciences, Beijing 100083, China
全文: PDF(1450 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

时移电阻率法能够应用于监测地下水污染物运移、衡量坡面稳定性等工程和环境问题。本文利用归一化时移电阻率法数据反演结果识别地下微小电阻率结构变化。首先,将初次采集数据作为背景数据,利用其归一化其他时刻时移电阻率法数据;再次,实现背景数据、时移数据以及归一化后时移数据的非线性共轭梯度反演。在合成数据算例中,保持观测系统不变,用相同反演参数和均匀半空间参考模型参与反演。反演结果表明,相对背景电阻率而言,归一化数据反演结果能够直接地、有效地分辨较为微小的电阻率结构动态变化,而传统电阻率反演不能分辨。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马欢
张洪洋
郭越
雷阳
谭捍东
吴萍萍
张浩楠
席彪
关键词 时移电阻率法归一化反演分辨力    
Abstract

The time-lapse resistivity method can be applied to engineering and environmental problems such as monitor groundwater contaminant transport, measure slope stability. In this paper, the normalized data inversion result of the time-lapse resistivity method was used to identify the subsurface structure of small resistivity changes. First, the data ratio normalization was adopted in which the initial data serve as the background data to normalize the data at other times. Next, the separate nonlinear conjugate gradients (NLCG) inversion result of initial data, time-lapse data and normalized time-lapse data were implemented. The same inverted parameters and homogenous half space model that was taken as the reference model were applied in all synthetic data examples. The inversion results show that the normalized data inversion results can effectively distinguish the small changes of resistivity relative to the background, but the conventional resistivity inversion almost cannot recognize it.

Key wordstime-lapse    resistivity method    normalization    inversion    differentiation
收稿日期: 2019-01-03      出版日期: 2019-11-28
:  P631  
基金资助:廊坊市科学技术研究自筹经费项目(2018013099);中央高校基本科研业务费项目(2018013099);国家自然科学基金项目(41804119)
作者简介: 马欢(1988-),男,讲师,主要研究方向为地球物理电法数值模拟算法和应用。
引用本文:   
马欢, 张洪洋, 郭越, 雷阳, 谭捍东, 吴萍萍, 张浩楠, 席彪. 时移电阻率法归一化数据反演分辨电阻率结构微小变化[J]. 物探与化探, 2019, 43(6): 1320-1325.
Huan MA, Hong-Yang ZHANG, Yue GUO, Yang LEI, Han-Dong TAN, Ping-Ping WU, Hao-Nan ZHANG, Biao XI. The normalized data inversion of time-lapse resistivity method for resolving small resistivity changes. Geophysical and Geochemical Exploration, 2019, 43(6): 1320-1325.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0008      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I6/1320
Fig.1  理论模型及观测系统示意
Fig.2  正演结果对比
a—与解析解对比结果; b—与CGPC对比结果
Fig.3  观测系统
Fig.4  理论模型
Fig.5  常规电阻率反演结果
Fig.6  时移数据反演结果相对背景数据反演结果变化量
Fig.7  归一化时移数据反演结果
[1] Loke M H, Dahlin T, Rucker D F . Smoothness-constrained time-lapse inversion of data from 3D resistivity surveys[J]. Near Surface Geophysics, 2014,12(1):5-24.
[2] Nimmer R E, Osiensky J L, Binley A M , et al. Electrical resistivity imaging of conductive plume dilution in fractured rock[J]. Hydrogeology Journal, 2007,15(5):877-890.
[3] Kuras O, Pritchard J D, Meldrum P I , et al. Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT)[J]. Comptes Rendus Geoscience, 2009,341(10-11):868-885.
[4] Ogilvy R D, Meldrum P I, Kuras O , et al. Automated monitoring of coastal aquifers with electrical resistivity tomography[J]. Near Surface Geophysics, 2009,7:367-375.
[5] Adeyemo I A, Omosuyi G O, Adelusi A O. 3Geoelectric soundings for delineation of saline water intrusion into aquifers in part of eastern Dahomey Basin, Nigeria[J]. Journal of Geoscience and Environment Protection, 2017, (3): 213-219, 221-232.
[6] Travelletti J, Sailhac P, Malet J P , et al. Hydrological response of weathered clay-shale slopes: water infiltration monitoring with time-lapse electrical resistivity tomography[J]. Hydrological Processes, 2011,26(14):2106-2119.
[7] Xu D, Hu X Y, Shan C L , et al. Landslide monitoring in southwestern China via time-lapse electrical resistivity tomography[J]. Applied Geophysics, 2016,13(1):1-12.
[8] Steelman C M, Klazinga D R, Cahill A G , et al. Monitoring the evolution and migration of a methane gas plume in an unconfined sandy aquifer using time-lapse GPR and ERT[J]. Journal of Contaminant Hydrology, 2017: 12-24.
[9] Legaz A, Vandemeulebrouck J, Revil A , et al. A case study of resistivity and self-potential signatures of hydrothermal instabilities, Inferno Crater Lake, Waimangu, New Zealand[J]. Geophys. Res. Lett., 2009,36:L12306.
[10] 刘丞会 . 基于自适应时间约束时移电阻率成像的溶质运移监测[D]. 北京:中国科学技术大学, 2016.
[10] Liu C H . Monitoring the solute transport with active time constrained time-lapse electrical resistivity tomography[D]. Beijing: University of Science and Technology of China, 2016.
[11] Chang P Y, Chang L C, Hsu S Y , et al. Estimating the hydrogeological parameters of an unconfined aquifer with the time-lapse resistivity-imaging method during pumping tests: Case studies at the Pengtsuo and Dajou sites, Taiwan[J]. Journal of Applied Geophysics, 2017: 134-143.
[12] Daily W, Ramirez A, LaBrecque D,, et al. Electrical resistivity tomography of vadose water movement[J]. Water Resources Research, 1992,28(5):1429-1442.
[13] LaBrecque D J, Yang X J . Difference Inversion of ERT Data: a Fast Inversion Method for 3-D in Situ Monitoring[J]. Journal of Environmental and Engineering Geophysics, 2001,6(2):83-89.
[14] Daily W, Ramirez A, Binley A , et al. Electrical resistance tomography[J]. The Leading Edge, 2004,23(5):438-442.
[15] Miller C R, Routh P S, Brosten T R , et al. Application of time-lapse ERT imaging to watershed characterization[J]. Geophysics, 2008,73(3):G7-G17.
[16] Cassiani G, Bruno V, Villa A , et al. A saline trace test monitored via time-lapse surface electrical resistivity tomography[J]. Journal of Applied Geophysics, 2006,59(3):244-259.
[17] Giordano N, Arato A, Comina C , et al. Time-lapse electrical resistivity imaging of the thermally affected zone of a Borehole Thermal Energy Storage system near Torino (Northern Italy)[J]. Journal of Applied Geophysics, 2017: 123-134.
[18] Lesparre N, Nguyen F, Kemna A , et al. A new approach for time-lapse data weighting in electrical resistivity tomography[J]. Geophysics, 2017,82(6):E325-E333.
[19] 王家映 . 地球物理反演[M]. 北京: 高等教育出版社, 2002.
[19] Wang J Y. Inverse theory in geophysics[M]. Beijing: Higher Education Press, 2002.
[20] Spitzer K . A 3-D finite-difference algorithm for DC resistivity modeling using conjugate gradient methods[J]. International Journal of Geophysics, 1995,123(3):903-914.
[1] 冯旭亮, 魏泽坤. 基于界面反演增强的位场边缘识别方法[J]. 物探与化探, 2022, 46(1): 130-140.
[2] 何胜, 马文鑫, 甘斌. 地面核磁共振法与高密度电阻率法在西藏盐湖卤水钾矿勘查中的应用[J]. 物探与化探, 2021, 45(6): 1409-1415.
[3] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[4] 黄远生, 王彦国, 罗潇. 基于归一化磁源强度垂向差分的磁源参数快速估计方法[J]. 物探与化探, 2021, 45(6): 1588-1596.
[5] 何可, 郭明, 胡章荣, 易国财, 王仕兴. 半航空瞬变电磁L1范数自适应正则化反演[J]. 物探与化探, 2021, 45(5): 1338-1346.
[6] 郭培虹, 冯治汉, 王万银, 唐小平, 刘生荣. 北秦岭华阳川地区重磁三维反演及岩浆岩特征研究[J]. 物探与化探, 2021, 45(5): 1217-1225.
[7] 刘鸿洲, 王孟华, 张浩, 彭玲丽, 李雯, 张杰, 赵智鹏, 伍泽荆. 基于分频构形反演方法的河道砂精准预测——以华北冀中探区赵皇庄地区为例[J]. 物探与化探, 2021, 45(5): 1311-1319.
[8] 邢涛, 袁伟, 李建慧. 回线源瞬变电磁法的一维Occam反演[J]. 物探与化探, 2021, 45(5): 1320-1328.
[9] 张鹏飞, 张世晖. 西湖凹陷平湖组砂泥岩岩性神经网络地震预测[J]. 物探与化探, 2021, 45(4): 1014-1020.
[10] 李瑞友, 张淮清, 吴昭. 基于在线惯序极限学习机的瞬变电磁非线性反演[J]. 物探与化探, 2021, 45(4): 1048-1054.
[11] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[12] 王文杰, 郝一, 薄海军, 王海龙, 徐浩清, 李永利, 毛磊, 刘永新, 袁帅. 包头市固阳县矿集区高密度电阻率法找水定井实例分析[J]. 物探与化探, 2021, 45(4): 869-881.
[13] 刘辉, 李静, 曾昭发, 王天琪. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
[14] 马良涛, 范廷恩, 许学良, 董建华, 蔡文涛. 油气检测多技术联合在B油田的应用研究[J]. 物探与化探, 2021, 45(4): 961-969.
[15] 李凡, 周明, 李开天, 鲁恺, 李振宇. 单斜地形情况下的磁共振测深方法反演研究[J]. 物探与化探, 2021, 45(3): 712-725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com