Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (6): 1439-1447    DOI: 10.11720/wtyht.2021.1219
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
胜利油田非一致性时移地震关键技术探索与实践
芮拥军(), 尚新民
中国石化胜利油田分公司 物探研究院,山东 东营 257022
Exploration and practice of non-uniform time-lapse seismic key technology in Shengli Oilfield
RUI Yong-Jun(), SHANG Xin-Min
Geophysical Research Institute of Shengli Oilfield Company,Dongying 257022,China
全文: PDF(7797 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

时移地震是一项解决油藏动态描述的有效技术,但自20世纪取得成功以来,受高昂成本和应用范围的限制,一直以来未得到广泛的应用。2007年以来,胜利油田针对高成熟探区二次地震采集普遍化的现状,提出了非一致性时移地震的思路,针对如何评估与消除非一致观测系统的影响、如何检测开采变化的微小差异、如何综合利用时移结果等一系列技术难题,历时十余年,创新形成了非一致性时移地震观测系统匹配技术、基于井数据的叠前互均化技术、叠前叠后敏感属性联合优化技术和基于油藏数值的时移地震综合解释技术等4项关键技术。配套形成了水驱型复杂断块油藏时移地震技术、小尺度气藏边界监测时移地震技术、蒸汽吞吐型稠油油藏时移地震技术,实施了6个区块300 km2的应用示范,展示了成果的广阔前景,拓宽了油藏地球物理技术解决开发难题的能力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
芮拥军
尚新民
关键词 胜利油田非一致性时移地震油藏监测二次采集    
Abstract

Time-lapse seismic survey is an effective technique for reservoir dynamic description,but it has not been widely used since its success in the last century due to the high cost and the limitation of its application range.Since 2007,Shengli Oilfield has put forward the idea of non-uniform time-lapse seismic survey in view of the current situation of the secondary acquisition seismic survey in high mature exploration area.Aiming at tackling a series of technical problems,such as how to evaluate and eliminate the influence of non-uniform acquisition system, how to detect the small difference of monitor changes and how to comprehensively use the time-lapse results,researchers have spent more than ten years to innovate the key technologies,i.e.,the matching technology of non-uniform time-lapse seismic acquisition system,the pre-stack cross equalization technology based on well data,the joint optimization technology of pre-stack and post-stack sensitive attributes,and the comprehensive interpretation technology of time-lapse seismic based on reservoir value.The time-lapse seismic technology of water-drive complex fault block reservoir,small-scale gas reservoir boundary monitoring and steam huff and puff heavy oil reservoir has been formed.The application demonstration of six blocks with an area of 300 square kilometers has been carried out,which shows the broad prospect of the achievements and broadens the ability of reservoir geophysical technology to solve the development problems.

Key wordsShengli Oilfield    non-uniform    time-lapse seismic survey    reservoir monitoring    secondary acquisition seismic survey
收稿日期: 2020-05-11      修回日期: 2021-05-12      出版日期: 2021-12-20
ZTFLH:  P631.4  
基金资助:国家科技重大专项“渤海湾盆地济阳坳陷致密油开发示范工程”(2017ZX05072)
作者简介: 芮拥军(1973-),男,高级工程师,主要从事地震资料处理方法与应用研究工作。Email: j_rui@126.com
引用本文:   
芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
RUI Yong-Jun, SHANG Xin-Min. Exploration and practice of non-uniform time-lapse seismic key technology in Shengli Oilfield. Geophysical and Geochemical Exploration, 2021, 45(6): 1439-1447.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1219      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I6/1439
滨二区三维 滨一二区三维
采集年度 1991 2010
观测系统 4L6S 20L15S
道数 240道 5760道
面元 50 m×25 m 25 m×12.5 m
覆盖次数 20次 240次
横纵比 0.2 0.5
道距/m 50 25
接收线距/m 200 150
炮点距/m 100 50
炮线距/m 150 150
最大炮检距/m 3 150 4 008
Table 1  滨二区三维与滨一二区三维观测系统参数
Fig.1  非一致性采集时移地震观测系统匹配技术流程
Fig.2  匹配处理前(a)后(b)方位角变化
Fig.3  单56区块典型地震剖面
Fig.4  非储集层(a)和储集层(b)匹配处理振幅差异
Fig.5  基于井控的伪多道叠前互均化技术
Fig.6  传统方法(a)与新方法(b)对比
Fig.7  叠前叠后时移敏感属性联合优化技术
Fig.8  数值模拟(a)与时移地震预测(b)结果对比
Fig.9  基于油藏模拟的时移地震解释
Fig.10  单56区块单井(a)与区块含水率(b)拟合曲线
Fig.11  基于时移地震差异属性调整前(a)后(b)对比
Fig.12  单56区块油藏模拟调整前(a)后(b)区块含水率拟合结果
序号 区块 油藏类型 应用效果
1 义东 复杂岩性 预测含油面积2.2 km2,剩余石油地质储量212万t
2 单56 稠油热采 发现有利区块2个,预测剩余储量达88万t
3 永55 气藏 预测有利范围地质储量30.4亿m3
4 高气7 气藏 预测有利范围地质储量0.25亿m3
5 永3 复杂断块 发现有利区块5个,预测剩余地质储量达26.1万t
6 高89 滩坝砂 CO2驱波及范围监测
Table 2  非一致性时移地震在胜利油田的应用
开发阶段 时间范围 产量/万t 含水/%
产油 产液
低速开发 1878~1992 5.71 9.85 13.380
高速开发 1992~2000 27.10 67.75 80
挖潜增产 2000~现今 8.85 99.53 90.1
Table 3  义东地区油藏开发史
三维区块 邵义三维 四扣三维 义东高精度
采集时间 1990 2000 2013
观测系统 4L6S 8L16S 32L10S
接收道数 240 768 10368
面元 50 m×25 m 25 m×25 m 12.5 m×12.5 m
覆盖次数 20 64 216
最大偏移距/m 3197 2510 4492
横纵比
Table 4  义东地区三期地震观测系统参数
Fig.13  时移地震处理后两期地震剖面对比
a—1990年邵义三维;b—2013年义东高精度三维
Fig.14  义东地区两期时移地震泊松比平面差异
a—邵义(1990)与四扣(2000)沙三段泊松比平面差异;b—四扣(2000)与义东高精度(2013)沙三段泊松比平面差异
三维区块 樊家三维 高89三维
采集时间 1992 2011
观测系统 4L6S 18L12S
面元 50 m×25 m 25 m×25 m
覆盖次数 20 225
最大偏移距/m 3150 5500
Table 5  高89地区两期地震观测系统参数
Fig.15  过高89-5井南北向地震剖面
a—樊家三维(1992)剖面;b—高89三维(2011)剖面
Fig.16  高89井区CO2波及范围振幅差异属性预测
[1] 甘利灯, 姚逢昌, 杜文辉, 等. 水驱油藏四维地震技术[J]. 石油勘探与开发, 2007, 34(4):437-444.
[1] Gan L D, Yao F C, Du W H, et al. 4D seismic technology for water flooding reservoirs[J]. Petroleum Exploration and Development, 2007, 34(4):437-444.
[2] 熊翥. 我国物探技术的进步及展望[J]. 石油地球物理勘探, 2004, 39(5):618-623.
[2] Xiong Z. Progress and prospect of geophysical technology in China[J]. Oil Geophysical Prospecting, 2004, 39(5):618-623.
[3] Waine M W, et al. Seismic monitoring of the Duri steamflood:Application to reservoir management[J]. The Leading Edge, 1997, 16(9):1275-1278.
doi: 10.1190/1.1437780
[4] 秦绪英, 朱海龙. 时移地震技术及其应用现状分析[J]. 勘探地球物理进展, 2007, 30(3):219-225.
[4] Qin X Y, Zhu H L. Analysis of the current status of time-lapse seismic technology[J]. Progress in Exploration Geophysics, 2007, 30(3):219-225.
[5] 云美厚, 丁伟, 杨长春. 油藏水驱开采时移地震监测岩石物理基础测量[J]. 地球物理学报, 2006, 49(6):1813-1818.
[5] Yun M H, Ding W, Yang C C. Petrophysical measurements for time-lapse seismic monitoring of reservoir waterflooding recovery[J]. Chinese Journal of Geophysics, 2006, 49(6):1813-1818.
[6] 曹辉. 油藏监测中的时延地震技术[J]. 勘探地球物理进展, 2003, 26(5):342-348.
[6] Cao H. Time-lapse seismic techniques in reservoir monitoring[J]. Progress Exploration Geophysics, 2003, 26(5):342-348.
[7] 鲍祥生, 丁建荣, 李红彩. 高集地区时移地震地震可行性研究[J]. 石油天然气学报, 2014, 36(12):81-85.
[7] Bao X S, Ding J R, Li H C. Fesibility study of time-lapse seismic technology in Gaoji area[J]. Journal of Oil and Gas Technology, 2014, 36(12):81-85.
[8] 朱振宇, 王小六, 何洋洋, 等. 海上时移地震关键技术研究与应用[J]. 中国海上油气, 2018, 30(4):76-85.
[8] Zhu Z Y, Wang X L, He Y Y, et al. Research and application of key marine time-lapse seismic technologies[J]. China Offshore Oil and Gas, 2018, 30(4):76-85.
[9] 邬达理, 李宗杰, 蒋波, 等. 陆上非重复性时移地震资料处理存在的问题与策略[J]. 石油物探, 2015, 54(4):427-434.
[9] Wu D L, Li Z J, Jiang B, et al. The problems for land non-repeated time-lapse seismic data processing and its countermeasures[J]. Geophysical Prospecting for Petreleum, 2015, 54(4):427-434.
[10] 王延光. 胜利油区时移地震技术应用研究与实践[J]. 油气地质与采收率, 2012, 19(1):50-54.
[10] Wang Y G. Study and application of time lapse seismic in Shengli oilfield[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(1):50-54.
[11] 刘成斋. 胜利探区地震采集技术发展历程回顾与启示[J]. 石油天然气地质, 2008, 29(3):397-403.
[11] Liu C Z. Review and enlightment of seismic acquisition technology development in Shengli exportation area[J]. Oil & Gas Geology, 2008, 29(3):397-403.
[12] 尚新民, 芮拥军, 石林光, 等. 胜利油田高密度地震探索与实践[J]. 地球物理徐进展, 2018, 33(4):1545-1553.
[12] Shang X M, Rui Y J, Shi L G, et al. Exploration and practice of high-density seismic survey in Shengli oilfield[J]. Progress in Geophysics, 2018, 33(4):1545-1553.
[13] 尹成, 葛子建, 芮拥军, 等. 非一致性采集时移地震油藏监测可行性研究[J]. 西南石油大学学报:自然科学版, 2014, 36(1):170-180.
[13] Yin C, Ge Z J, Rui Y J, et al. Feasibility study on non-repeating acquired time-lapse seimic reservoir monitoring[J]. Journal of Southwest Petrelueum University:Science & Technology Edition, 2014, 36(1):170-180.
[14] 芮拥军. 陆上非一致性采集时延地震处理关键技术[J]. 物探与化探, 2016, 40(4):778-782.
[14] Rui Y J. Key processing technique for land non-uniform acquisition of time-lapse seismic[J]. Geophysical and Geochemical Exploration, 2016, 40(4):778-782.
[15] 石玉梅, 刘雯林, 姚逢昌. 地震资料信噪比对油藏地震监测的影响[J]. 石油勘探与开发, 2004, 31(s1):113-116.
[15] Shi Y M, Liu W L, Yao F C. Effects of signal-to-noise ratio on seismic reservoir monitoring[J]. Petroleum Exploration and Development, 2004, 31(s1):113-116.
[16] 黄旭日. 国外时移地震技术的研究现状[J]. 勘探地球物理进展, 2003, 26(1):8-12.
[16] Huang X R. A review of time-lapse seismic techniques abroad[J]. Progress in Exploration Geophysics, 2003, 26(1):8-12.
[17] 李志娜, 张敏, 李振春, 等. 基于伪多道匹配的时移地震互均化方法[J]. 石油地球物理勘探, 2015, 50(6):1083-1088.
[17] Li Z N, Zhang M, Li Z C, et al. Cross-equalization based on pseudo-multichannel matching in time-lapse seimic[J]. Oil Geophysical Prospecting, 2015, 50(6):1083-1088.
[18] 朱焱, 谢进庄, 杨为华, 等. 提高油藏数值模拟历史拟合精度的方法[J]. 石油勘探与开发, 2008, 35(2):225-229.
[18] Zhu Y, Xie J Z, Yang W H, et al. Method for improving history matching precision of reservoir numerical simulation[J]. Petroleum Exploration and Development, 2008, 35(2):225-229.
[19] 李玉梅, 陈开远, 赵玉欣. 提高油藏数值模拟精度的对策研究[J]. 石油天然气学报, 2010, 32(3):350-352.
[19] Li Y M, Chen K Y, Zhao Y X. Countermeasures for improving the accuracy Numerical Simulatio[J]. Journal of Oil and Gas Technology, 2010, 32(3):350-352.
[20] 王厉强, 刘慧卿, 赵丽, 等. 提高精细油藏数值模拟预测精度的前期研究——以流花11-1油藏为例[J]. 油气地质与采收率, 2006, 13(5):69-71.
[20] Wang L Q, Liu H Q, Zhao L, et al. Earlier research of enhancing the precision of fine reservoir numerical simulation-taking Liuhua 11-1 oil reservoir as an example[J]. Petroleum Geology and Recovery Efficiency, 2006, 13(5):69-71.
[21] Whorton L P, Brownscombe E R, Dyes A B. Method for producing oil by means of carbon dioxide: U. S. Patent 2623596[P]. 1952-12-30.
[22] 朱希安, 汪毓铎. 国内外CO2运移监测技术和方法研究新进展[J]. 中国煤层气, 2011, 8(5):3-7.
[22] Zhu X A, Wang Y D. The new progress on movement monitoring technique and method research of CO2 in domestic and abroad[J]. China Coalbeo Methane, 2011, 8(5):3-7.
[23] 由荣军, 李德春, 武俊文. CO2地质储存的地震监测[J]. 物探与化探, 2012, 36(1):114-116.
[23] You R J, Li D C, Wu J W. A preliminary study of seismic monitoring in CO2 Geological Storage[J]. Geophysical and Geochemical Exploration, 2012, 36(1):114-116.
[24] 秦积舜, 韩海水, 刘晓蕾. 美国CO2驱油技术应用及启示[J]. 石油勘探与开发, 2015, 42(2):209-216.
[24] Qin J S, Han H S, Liu X L. Application and enlightenment of carbon dioxide flooding in th United States of America[J]. Petroleum Exploration and Development, 2015, 42(2):209-216.
[1] 高云峰, 王宗俊, 李绪宣, 胡光义, 范廷恩, 张晶玉, 朱振宇. 多层系油气藏时移地震匹配处理技术[J]. 物探与化探, 2019, 43(1): 183-188.
[2] 芮拥军. 陆上非一致性采集时延地震处理关键技术[J]. 物探与化探, 2016, 40(4): 778-782.
[3] 尚新民. 时延地震处理中的近地表静校正技术[J]. 物探与化探, 2014, 38(1): 162-166.
[4] 汪勇, 阳和华, 桂志先. 流体替代的地震反射振幅特征分析[J]. 物探与化探, 2012, 36(6): 991-995.
[5] 李景叶, 张连群, 陈小宏. 时移地震数据空间偏差校正方法[J]. 物探与化探, 2012, 36(4): 678-683.
[6] 张荣忠, 曹玉玲, 郭良川. 地震虚源法技术[J]. 物探与化探, 2012, 36(2): 208-213.
[7] 丘斌煌, 李添才, 周家雄, 刘金朋, 晏红艳, 肖二莲. 海上时移地震数据处理关键技术[J]. 物探与化探, 2011, 35(5): 696-700.
[8] 李强, 尚新民, 赵胜天, 王胜阁.
非一致性时移地震资料叠前互约束处理技术
[J]. 物探与化探, 2011, 35(1): 97-102.
[9] 黄捍东, 张如伟. 胜利油田孤北地区隐蔽油气藏勘探方法[J]. 物探与化探, 2009, 33(3): 294-298.
[10] 云美厚, 丁伟, 王开燕, 杨晓燕, 朱伟强. 陆相薄互层稠油油藏热采时移地震监测互均衡处理效果分析[J]. 物探与化探, 2006, 30(5): 435-440,445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com