Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (6): 1467-1472    DOI: 10.11720/wtyht.2025.1445
  工程地质调查 本期目录 | 过刊浏览 | 高级检索 |
综合物探方法在某电厂管廊渗漏探测中的应用
王彦兵(), 金永军, 朱姝
国网经济技术研究院有限公司, 北京 102209
Application of an integrated geophysical prospecting method in pipeline leakage detection in a power plant
WANG Yan-Bing(), JIN Yong-Jun, ZHU Shu
State Grid Economic and Technological Research Institute Co., Ltd., Beijing 102209, China
全文: PDF(3344 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了减少由管线渗漏引起的经济损失,本文将探地雷达、多通道瞬态面波、电阻率映像法的综合物探技术应用到安徽淮南某电厂管线渗漏探测中。结果表明,探地雷达震荡信号能够揭示渗漏区域,多通道瞬态面波反映出了测区的渗漏程度,电阻率映像法显示了渗漏区的低阻形态特征。本次应用取得了较好的效果,可为同类的管廊渗漏探测提供一种更加精确确定渗漏位置的有效手段。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王彦兵
金永军
朱姝
关键词 管线渗漏综合物探探地雷达面波法电阻率法    
Abstract

To reduce the economic losses caused by pipeline leakage, this paper applies a comprehensive geophysical exploration technology integrating ground-penetrating radar, multi-channel transient surface waves, and resistivity imaging to detect pipeline leakage at a power plant in Huainan, Anhui Province. The results show that the ground-penetrating radar oscillatory signals can reveal the leakage zone, the multi-channel transient surface wave can reflect the leakage severity within the detected area, and the electrical resistivity tomography can present the low-resistance morphology of the leakage zone. Demonstrated by the satisfactory outcomes, this integrated geophysical prospecting method proves to be an effective means to accurately locate the leakage positions for similar pipelines.

Key wordspipeline leakage    integrated geophysical prospecting    ground penetrating radar (GPR)    surface wave technique    electrical resistivity tomography (ERT) technique
收稿日期: 2024-11-12      修回日期: 2025-06-30      出版日期: 2025-12-20
ZTFLH:  P631  
基金资助:国家电网有限公司总部管理科技项目“基于电磁、地震探测与探地雷达融合的城市空间地下管线检测技术研究与应用”(5700-202316268A-1-1-ZN)
引用本文:   
王彦兵, 金永军, 朱姝. 综合物探方法在某电厂管廊渗漏探测中的应用[J]. 物探与化探, 2025, 49(6): 1467-1472.
WANG Yan-Bing, JIN Yong-Jun, ZHU Shu. Application of an integrated geophysical prospecting method in pipeline leakage detection in a power plant. Geophysical and Geochemical Exploration, 2025, 49(6): 1467-1472.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1445      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I6/1467
Fig.1  现场测线布设
(AB/2)/m (MN/2)/m 装置系数K
1.5 0.5 6.28
2.5 0.5 18.85
4 0.5 49.48
6 0.5 112.31
9 0.5 253.68
15 1.5 233.26
25 2.5 388.77
40 4 622.04
Table 1  供电极距AB/2及相应测量极距MN/2变化序列
Fig.2  物探资料处理结果
Fig.3  电厂钻孔岩芯信息
Fig.4  地质解释结果
[1] 曹徐齐, 阮辰旼. 全球主要城市供水管网漏损率调研结果汇编[J]. 净水技术, 2017, 36(4):6-14.
[1] Cao X Q, Ruan C M. Compilation of survey results on water loss rates in water supply networks of major cities worldwide[J]. Water Purification Technology, 2017, 36(4):6-14.
[2] 刘海, 邓新, 戴定武, 等. 地下管线渗漏探测与定位方法研究[J]. 现代雷达, 2023, 45(12):7-14.
[2] Liu H, Deng X, Dai D W, et al. Research on leak detection and localization methods for underground pipelines[J]. Modern Radar, 2023, 45(12):7-14.
[3] 白若男. 供排水管网检测技术发展现状[J]. 企业科技与发展, 2022, 484(2):43-45.
[3] Bai R N. Development status of detection technology for water supply and drainage networks[J]. Enterprise Science and Technology Development, 2022, 484(2):43-45.
[4] Datta S, Sarkar S. A review on different pipeline fault detection methods[J]. Journal of Loss Prevention in the Process Industries, 2016, 41(5):97-106.
[5] 杜高潮. 区域装表法在铁路给水管网治漏中的应用[J]. 中国给水排水, 2013, 29(15):138-140,145.
[5] Du G C. Application of zone metering method in water loss control of railway water supply network[J]. China Water & Wastewater, 2013, 29(15):138-140,145.
[6] 吴渝, 林保江. 供水管网漏水的几种检测方法[J]. 山西建筑, 2020, 46(12):121-122,172.
[6] Wu Y, Lin B J. Several methods of leakage detection for water supply network[J]. Shanxi Architecture, 2020, 46(12):121-122,172.
[7] 张翰林, 吴彩保, 王杜, 等. 红外热成像仪在埋地蒸汽管道泄漏失效分析中的应用[J]. 中国特种设备安全, 2021, 37(6):68-71.
[7] Zhang H L, Wu C B, Wang D, et al. Application of infrared thermal imaging in failure analysis of buried steam pipeline leakage[J]. China Special Equipment Safety, 2021, 37(6):68-71.
[8] 刘海, 黄肇刚, 岳云鹏, 等. 地下管线渗漏环境下探地雷达信号特征分析[J]. 电子与信息学报, 2022, 44(4):1257-64.
[8] Liu H, Huang Z G, Yue Y P, et al. Characteristics analysis of ground penetrating radar signals for groundwater pipe leakage environment[J]. Journal of Electronics & Information Technology, 2022, 44(4):1257-1264.
[9] 于辰雨, 卢鑫, 陈小飞, 等. 城市地下污水管线渗漏区形态及影响范围分析[J]. 中国水运, 2023, 23(24):66-8.
[9] Yu C Y, Lu X, Chen X F, et al. Morphology and influence range analysis of leakage areas in urban underground sewage pipelines[J]. China Water Transport, 2023, 23(24):66-68.
[10] 胡群芳, 郑泽昊, 刘海, 等. 三维探地雷达在城市市政管线渗漏探测中的应用[J]. 同济大学学报:自然科学版, 2020, 48(7):972-981.
[10] Hu Q F, Zheng Z H, Liu H, et al. Application of 3D ground penetrating radar to leakage detection of urban underground pipes[J]. Journal of Tongji University :Natural Science Edition, 2020, 48(7):972-981.
[11] Caetano T R, Santos H A, van Dam R L. Leak identification in non-pressurized concrete pipelines by the use of geophysical methods[J]. Journal of Applied Geophysics, 2023, 208:104883.
[12] Dashwood B, Gunn D, Curioni G, et al. Surface wave surveys for imaging ground property changes due to a leaking water pipe[J]. Journal of Applied Geophysics, 2020, 174:12.
[13] Cataldo A, Persico R, Leucci G, et al. Time domain reflectometry,ground penetrating radar and electrical resistivity tomography:A comparative analysis of alternative approaches for leak detection in underground pipes[J]. NDT & E Intemational, 2014, 62:14-28.
[14] 贺转利, 何禹. 综合物探方法在城市地质调查中的应用研究:以湖南省常德市鼎城区隐伏基岩探测为例[J]. 中国矿业, 2024, 33(4):242-251.
[14] He Z L, He Y. Application research of integrated geophysical prospecting methods in urban geological survey:A case study of buried bedrock detection in dingcheng district,changde city,hunan province[J]. China Mining Magazine, 2024, 33(4):242-251.
[15] 王建超, 施玉娇, 曾友强, 等. 重磁电综合物探方法在大井银铜多金属矿勘查应用[J]. 中国矿业, 2024, 33(S1):551-556.
[15] Wang J C, Shi Y J, Zeng Y Q, et al. Application of integrated gravity,magnetic,and electrical geophysical prospecting methods in the exploration of dajin silver-copper polymetallic deposit[J]. China Mining Magazine, 2024, 33(S1):551-556.
[1] 马文德, 田仁飞, 郑伟. 自适应同步压缩变换在隧道探地雷达超前地质预报中的应用[J]. 物探与化探, 2025, 49(6): 1449-1458.
[2] 郭军旗, 范本峰, 鲁恺, 王鹏, 翟好杰. 不规则测线视电阻率数据的3D反演方法[J]. 物探与化探, 2025, 49(4): 896-901.
[3] 殷岳萌, 王成浩, 李少龙, 张照, 徐飞. 多层泡棉复合吸波材料在探地雷达天线设计中的应用[J]. 物探与化探, 2025, 49(3): 727-733.
[4] 邬远明, 邢泽峰, 鲁光银. 西南山岭强震区特长深埋隧道的综合物探应用[J]. 物探与化探, 2025, 49(3): 746-753.
[5] 郑伟, 田仁飞, 高雨含, 武斌. 最小均值交叉熵的时频峰值滤波在探地雷达信号去噪中的应用[J]. 物探与化探, 2025, 49(2): 404-410.
[6] 周鑫, 王洪华, 王欲成, 吴祺铭, 王浩林, 刘洪瑞. 基于共偏移距GPR信号包络和三维速度谱分析的介质电磁波速度估计方法[J]. 物探与化探, 2024, 48(6): 1693-1701.
[7] 姜国庆, 郝社锋, 喻永祥, 杜建国, 李明, 尚通晓, 宋京雷. 基于三维电阻率反演的滑坡地质灾害调查——以无锡市雪浪山景区滑坡为例[J]. 物探与化探, 2024, 48(6): 1720-1729.
[8] 杨浩, 邹杰, 程丹丹, 于景兰. 探地雷达在临海市古长城内部结构检测中的应用分析[J]. 物探与化探, 2024, 48(6): 1741-1746.
[9] 刘洪华, 张卉, 王汝杰, 于鹏, 秦升强, 李文宇, 车荣祺. 滨海城市地质结构电阻率法三维模拟与应用[J]. 物探与化探, 2024, 48(4): 1037-1044.
[10] 陈永凌, 蒋首进, 谢丹, 王嘉, 何志雄, 刘澄. 阿里地区日土县综合物探方法找水研究[J]. 物探与化探, 2024, 48(3): 668-674.
[11] 张巍, 周瑜琨, 刘立岩, 陈俊良. 跨孔电阻率法在城市输水管道渗漏监测中的应用[J]. 物探与化探, 2024, 48(3): 884-890.
[12] 邵泉杰, 孙灵芝. 基于EMD和KL变换的时空联合探地雷达杂波抑制[J]. 物探与化探, 2024, 48(2): 508-513.
[13] 赵自豪, 李鹏慧, 吕海建, 康森. 露天矿台阶对高密度电法勘探影响的实验研究[J]. 物探与化探, 2024, 48(2): 565-572.
[14] 尹达, 辛国亮, 孙学超, 张友源, 张其道. 实时三维探地雷达关键技术的设计与实现[J]. 物探与化探, 2024, 48(1): 194-200.
[15] 宋涛, 包怡, 赵松, 吴建峰, 许元顺, 涂海峰. 井—电联合勘探与三维地质建模在某填埋场环境调查中的应用[J]. 物探与化探, 2024, 48(1): 272-280.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com