Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (1): 129-137    DOI: 10.11720/wtyht.2025.1157
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
岩石物理数据反演成像研究
苏本玉1(), 张佳琦1, 谭登攀2, 于景邨2, Li Zhixiong3
1.中国矿业大学 安全工程学院 煤矿瓦斯与火灾防治教育部重点实验室,江苏 徐州 221116
2.中国矿业大学 资源与地球科学学院,江苏 徐州 221116
3.Faculty of Mechanical Engineering, Opole University of Technology,Opole, Poland 45-758
Inversion imaging of petrophysical data
SU Ben-Yu1(), ZHANG Jia-Qi1, TAN Deng-Pan2, YU Jing-Cun2, LI Zhi-Xiong3
1. Key Laboratory of Gas and Fire Control for Coal Mines,China University of Mining and Technology, Xuzhou 221116, China
2. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
3. Faculty of Mechanical Engineering, Opole University of Technology, 45-758 Opole, Poland
全文: PDF(5029 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

岩石物理数据反演能对岩石内部微观裂隙结构进行成像,可洞察岩土内部裂隙的随外界环境变化演化规律,是研究深部岩土灾变机理直观可靠的方法。文章介绍了岩石物理数据的采集系统和电阻率正、反演算法。基于上述工作,分别开展了岩石物理二维和三维反演成像的数值模拟工作,二维反演成像的数值模拟结果表明,该方法可刻画充填高电阻率和低电阻率的毫米级岩石裂隙;三维数值模拟结果表明,该方法对充填高电阻率和低电阻率的毫米级缝洞可进行精确定位和有效识别。针对微波破裂岩石样本,开展了砂岩加热破坏前、砂岩加热至熔融状态和砂岩从熔融状态至冷却3种状态下的数据测量和反演成像工作,初步揭示了微波加热砂岩裂隙变化规律,为研究深部岩土灾变机理提供了一种新的方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏本玉
张佳琦
谭登攀
于景邨
Li Zhixiong
关键词 岩石物理反演成像岩石微观裂隙结构深部岩土灾变机理    
Abstract

The inversion of petrophysical data can image the microscopic fracture structures inside rocks, revealing the evolutionary patterns of fractures within rocks and soil with changes in external environments. Hence, it is an intuitive and reliable method for investigating the mechanisms of deep geotechnical disasters. This study presented a petrophysical data acquisition system and resistivity-based forward modeling and inversion algorithms. Based on the above, this study conducted numerical simulations of 2D and 3D inversion imaging of petrophysical data. As indicated by the numerical simulation results, 2D inversion imaging can characterize millimeter-scale rock fractures with high/low resistivities, whereas 3D inversion imaging can accurately locate and effectively identify millimeter-scale fractures and vugs with high/low resistivities. Moreover, data measurement and inversion imaging were conducted on rock samples subjected to microwave-induced fracturing in three states: heated sandstone before failure, sandstone heated to a molten state, and molten sandstone in a cooled state, preliminarily revealing the variation patterns of sandstone fractures under microwave heating. Overall, this study provides a novel method for exploring the mechanisms of deep geotechnical disasters.

Key wordspetrophysics    inversion imaging    microscopic rock fracture structure    mechanism of a deep geotechnical disaster
收稿日期: 2024-04-07      修回日期: 2024-05-12      出版日期: 2025-02-20
ZTFLH:  P632  
基金资助:国家自然基金项目(42274179);国家自然基金项目(42027801);国家重点研发计划项目(2022YFC3003300)
作者简介: 苏本玉(1981-),男,2012年10月毕业日本九州大学,博士,教授,目前主要从事地球物理反演成像与地质灾害监测的研究工作。Email:subenyu@gmail.com
引用本文:   
苏本玉, 张佳琦, 谭登攀, 于景邨, Li Zhixiong. 岩石物理数据反演成像研究[J]. 物探与化探, 2025, 49(1): 129-137.
SU Ben-Yu, ZHANG Jia-Qi, TAN Deng-Pan, YU Jing-Cun, LI Zhi-Xiong. Inversion imaging of petrophysical data. Geophysical and Geochemical Exploration, 2025, 49(1): 129-137.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1157      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I1/129
Fig.1  岩样数据采集系统主机
Fig.2  采集控制界面
Fig.3  参数设置界面
Fig.4  非结构四面体单元
Fig.5  中间高电阻率、两侧低电阻率的岩心裂隙模型数值模拟
Fig.6  中间低电阻率两侧高电阻率的岩心裂隙模型数值模拟
Fig.7  缝洞型三维岩心样本模型数值模拟
Fig.8  缝洞型三维岩心样本模型数值反演结果切片
Fig.9  岩心电阻率数据采集系统
Fig.10  岩心电阻率测试采集数据误差
Fig.11  微波破岩物理实验与数据反演成像
[1] 刘欢, 徐锦绣, 高文博, 等. 基于解释单元的水淹层原始电阻率反演及应用[J]. 地球物理学进展, 2019, 34(1):144-150.
[1] Liu H, Xu J X, Gao W B, et al. Original resistivity inversion of water-flooded zones based on interpretation unit and its application[J]. Progress in Geophysics, 2019, 34(1):144-150.
[2] 高超, 秦胜君, 安守学, 等. 基于三维电阻率反演技术的采动覆岩“两带” 发育特征研究[J]. 山西煤炭, 2023, 43(1):109-118.
[2] Gao C, Qin S J, An S X, et al. Development characteristics of the “two zones” of mining overburden strata based on 3D resistivity inversion[J]. Shanxi Coal, 2023, 43(1):109-118.
[3] 杨志成, 陈海宏, 周玲玲, 等. 时频电磁法在金牛湖地区深部地热资源勘查中的应用[J]. 工程地球物理学报, 2024, 21(1):81-91.
[3] Yang Z C, Chen H H, Zhou L L, et al. Application of time-frequency electromagnetic method in exploration of deep geothermal resources in Jinniu Lake area[J]. Chinese Journal of Engineering Geophysics, 2024, 21(1):81-91.
[4] Wahab S, Saibi H, Mizunaga H. Groundwater aquifer detection using the electrical resistivity method at Ito Campus,Kyushu University (Fukuoka,Japan)[J]. Geoscience Letters, 2021, 8(1):15.
[5] Loke M H, Rucker D F, Chambers J E, et al. Electrical resistivity surveys and data interpretation[M]. Cham: Springer International Publishing, 2020.
[6] Tso C H M, Iglesias M, Wilkinson P, et al. Efficient multiscale imaging of subsurface resistivity with uncertainty quantification using ensemble Kalman inversion[J]. Geophysical Journal International, 2021, 225(2):887-905.
[7] Aleardi M, Vinciguerra A, Hojat A. A geostatistical Markov chain Monte Carlo inversion algorithm for electrical resistivity tomography[J]. Near Surface Geophysics, 2021, 19(1):7-26.
doi: 10.1002/nsg.12133
[8] 杨永明, 鞠杨, 刘红彬, 等. 孔隙结构特征及其对岩石力学性能的影响[J]. 岩石力学与工程学报, 2009, 28(10):2031-2038.
[8] Yang Y M, Ju Y, Liu H B, et al. Influence of porous structure properties on mechanical performances of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10):2031-2038.
[9] 孙强, 张志镇, 薛雷, 等. 岩石高温相变与物理力学性质变化[J]. 岩石力学与工程学报, 2013, 32(5):935-942.
[9] Sun Q, Zhang Z Z, Xue L, et al. Physico-mechanical properties variation of rock with phase transformation under high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5):935-942.
[10] 何国梁, 张磊, 吴刚. 循环冻融条件下岩石物理特性的试验研究[J]. 岩土力学, 2004, 25(S2):52-56.
[10] He G L, Zhang L, Wu G. Test study on physical characteristics of rock under freezing-thawing cycles[J]. Rock and Soil Mechanics, 2004, 25(S2):52-56.
[11] 孟召平, 彭苏萍, 张慎河. 不同成岩作用程度砂岩物理力学性质三轴试验研究[J]. 岩土工程学报, 2003, 25(2):140-143.
[11] Meng Z P, Peng S P, Zhang S H. Triaxial test on physical and mechanical properties of sandstone for different diagenesis degree[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2):140-143.
[12] 马炳镇, 李貅. 矿井直流电法超前探中巷道影响的数值模拟[J]. 煤田地质与勘探, 2013, 41(1):78-81.
[12] Ma B Z, Li X. Roadway influences on advanced DC detection in underground mine[J]. Coal Geology & Exploration, 2013, 41(1):78-81.
[13] 李毛飞, 刘树才, 姜志海, 等. 矿井直流电透视底板探测及三维反演解释[J]. 煤炭学报, 2022, 47(7):2708-2721.
[13] Li M F, Liu S C, Jiang Z H, et al. Detecting floor geological information bymine DC perspective and 3D inversion[J]. Journal of China Coal Society, 2022, 47(7):2708-2721.
[14] Tang W W, Liu J X, Ma C Y, et al. Fast iterative solver for 3D finite-element modeling of controlled-source electromagnetic responses with vector and scalar potentials[J]. Geophysics, 2023, 88(3):E91-E105.
[15] Yang Y, Wang P F, Brandenberg S J. An algorithm for generating spatially correlated random fields using Cholesky decomposition and ordinary Kriging[J]. Computers and Geotechnics, 2022,147:104783.
[16] Neyamadpour A. Application of joint inversion of electrical resistivity data to determine the geometric distribution of municipal sewage leaks:A case study in the Masjedsoleyman town[J]. Advanced Applied Geology, 2023, 13(4):1105-1117.
[17] Mohammadi Vizheh M, Bastani M, Kalscheuer T, et al. Constrained 2D inversion of radio-magnetotelluric and controlled-source audio-magnetotelluric data using high-resolution reflection seismic data:An example in groundwater surveying from Heby,Sweden[J]. Geophysics, 2023, 88(2):B79-B90.
[18] Avseth P, Mukerji T, Mavko G. Quantitative seismic interpretation:Applying rock physics tools to reduce interpretation risk[M]. Cambridge: Cambridge University Press, 2005.
[19] 陈剑铭, 任启伟, 涂运中, 等. 基于孔裂隙理论的岩石物理实验研究与理论应用[J]. 地质论评, 2023, 69(S1):585-587.
[19] Chen J M, Ren Q W, Tu Y Z, et al. Experimental study and theoretical application of rock physics based on pore and fracture theory[J]. Geological Review, 2023, 69(S1):585-587.
[20] Anselmetti F S, Eberli G P. Controls on sonic velocity in carbonates[J]. Pure and Applied Geophysics, 1993, 141(2):287-323.
[21] Xu S Y, Payne M A. Modeling elastic properties in carbonate rocks[J]. The Leading Edge, 2009, 28(1):66-74.
[22] 印兴耀, 宗兆云, 吴国忱. 岩石物理驱动下地震流体识别研究[J]. 中国科学:地球科学, 2015, 45(1):8-21.
[22] Yin X Y, Zong Z Y, Wu G C. Study on seismic fluid identification driven by petrophysics[J]. Scientia Sinica:Terrae, 2015, 45(1):8-21.
[23] 何沛田, 黄志鹏. 层状岩石的强度和变形特性研究[J]. 岩土力学, 2003, 24(S1):1-5.
[23] He P T, Huang Z P. Studies of strength and deformation characteristics for stratified rock[J]. Rock and Soil Mechanics, 2003, 24(S1):1-5.
[24] 罗彦斌, 陈建勋, 王利宝, 等. 考虑层间黏聚力的水平层状围岩隧道顶板力学模型计算[J]. 中国公路学报, 2018, 31(10):230-237,265.
[24] Luo Y B, Chen J X, Wang L B, et al. Mechanical model calculations of tunnel roof with horizontal StratifiedRock mass tunneling considering the interlayer cohesion[J]. China Journal of Highway and Transport, 2018, 31(10):230-237,265.
[25] 刘平, 刘泉声, 夏明锬, 等. 孔洞形状对层状岩石力学特性影响的FDEM数值模拟研究[J]. 中南大学学报:自然科学版, 2024, 55(2):595-606.
[25] Liu P, Liu Q S, Xia M T, et al. Effect of hole shapes on mechanical behavior of layered rocks using FDEM numerical method[J]. Journal of Central South University:Science and Technology Edition, 2024, 55(2):595-606.
[26] 张茹, 吕游, 张泽天, 等. 深地工程多维信息感知与智能建造的发展与展望[J]. 煤炭学报, 2024, 49(3):1259-1290.
[26] Zhang R, Lyu Y, Zhang Z T, et al. Development and prospect of multidimensional information perception and intelligent construction in deep earth engineering[J]. Journal of China Coal Society, 2024, 49(3):1259-1290.
[27] 朱健, 胡国忠, 许家林, 等. 煤层层理对微波破煤增透效果的影响规律[J]. 煤炭学报, 2024, 49(5):2324-2337.
[27] Zhu J, Hu G Z, Xu J L, et al. The influence law of coal seam bedding on the effect of microwave breaking coal and increasing permeability[J]. Journal of Coal Science, 2024, 49(5):2324-2337.
[28] 许家林. 煤矿绿色开采20年研究及进展[J]. 煤炭科学技术, 2020, 48(9):1-15.
[28] Xu J L. Research and progress of coal mine green mining in 20 years[J]. Coal Science and Technology, 2020, 48(9):1-15.
[29] 王兆丰, 刘军. 我国煤矿瓦斯抽放存在的问题及对策探讨[J]. 煤矿安全, 2005, 36(3):29-32,44.
[29] Wang Z F, Liu J. Problems existing in methane drainage in coal mines of China and probing into the countermeasures[J]. Safety in Coal Mines, 2005, 36(3):29-32,44.
[30] 李贺. 微波辐射下煤体热力响应及其流—固耦合机制研究[D]. 徐州: 中国矿业大学, 2018.
[30] Li H. Studyonthermalresponseand fluid-solidcoupling mechanismof coalunder microwave radiation[D]. Xuzhou: China University of Mining and Technology, 2018.
[31] 杨新乐, 任常在, 张永利, 等. 低渗透煤层气注热开采热—流—固耦合数学模型及数值模拟[J]. 煤炭学报, 2013, 38(6):1044-1049.
[31] Yang X L, Ren C Z, Zhang Y L, et al. Numerical simulation of the coupled thermal-fluid-solid mathematical models during extracting methane in low-permeability coal bed by heat injection[J]. Journal of China Coal Society, 2013, 38(6):1044-1049.
[32] 管伟明, 张紫昭. 微波加热煤岩裂隙变形的电—热—固耦合模型[J]. 中国矿业, 2015, 24(7):133-136.
[32] Guan W M, Zhang Z Z. Numerical simulate for crack deformation of coal in microwave heated[J]. China Mining Magazine, 2015, 24(7):133-136.
[1] 王永刚, 姚宗惠, 杨骐羽, 李景叶, 宋炜. 考虑孔隙形状的碳酸盐岩储层流体综合识别方法研究及应用——以鄂尔多斯盆地奥陶系马家沟组四段为例[J]. 物探与化探, 2025, 49(1): 177-188.
[2] 钟厚财, 刘振宇, 朱哲, 屈琳, 张珊, 姚燕飞, 范蓉蓉. 玛湖凹陷风城组复杂岩性组合横波预测方法探索[J]. 物探与化探, 2024, 48(3): 736-746.
[3] 赵冰. 基于孔喉分布碳酸盐岩储层类型划分[J]. 物探与化探, 2024, 48(1): 134-141.
[4] 杨骐羽, 李景叶, 吴凡, 李文瑾, 崔津铭. 考虑软矿物纵横比的页岩岩石物理建模及其应用[J]. 物探与化探, 2024, 48(1): 98-104.
[5] 张德明, 刘志刚, 臧殿光, 廖显锋, 刘志毅, 刘国宝. 基于叠前同时反演的致密砂岩储层预测及含气性识别——以苏里格S区块为例[J]. 物探与化探, 2022, 46(3): 645-652.
[6] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[7] 邓炜, 梁金强, 钟桐, 何玉林, 孟苗苗. 基于水合物指示因子的地震识别方法[J]. 物探与化探, 2021, 45(1): 57-67.
[8] 侯波, 康洪全, 程涛. 综合成岩作用和孔隙形状的岩石物理模型及其应用[J]. 物探与化探, 2019, 43(1): 161-167.
[9] 杨东升, 刘春成, 曹思远, 黄饶. 一种预测天然气饱和度的新方法[J]. 物探与化探, 2016, 40(5): 968-973.
[10] 李红梅. 弹性参数直接反演技术在储层流体识别中的应用[J]. 物探与化探, 2014, 38(5): 970-975.
[11] 杨涛, 高金田, 顾左文, Baatarkhuu Dagva, Batsaihan Tserenpil. 蒙古国苏赫巴托尔—乌兰巴托—达兰扎达嘎德剖面岩石物性基本特征[J]. 物探与化探, 2014, 38(5): 943-948.
[12] 谢会文, 许永忠, 郑多明, 王兴军, 苗青, 徐亚, 汤浩哲. 火成岩速度反演及三维速度场建立的关键技术及效果分析[J]. 物探与化探, 2013, 37(6): 1071-1079.
[13] 曹磊, 杨刚. 基于测井资料的岩石物理学正反演技术[J]. 物探与化探, 2013, 37(1): 171-174.
[14] 冯兴强, 张忠民. 塔河油田古生界碎屑岩岩石物理特征[J]. 物探与化探, 2011, 35(2): 183-187.
[15] 马中高, 周巍, 孙成龙. 地震岩石物理分析软件系统设计和实现[J]. 物探与化探, 2006, 30(3): 260-265.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com