Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (1): 57-67    DOI: 10.11720/wtyht.2021.2511
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于水合物指示因子的地震识别方法
邓炜1,2(), 梁金强1,3, 钟桐1, 何玉林3, 孟苗苗3
1.中国地质调查局 广州海洋地质调查局,广东 广州 510075
2.自然资源部 海底矿产资源重点实验室,广东 广州 510075
3.中国地质调查局 天然气水合物工程技术中心,广东 广州 510700
Hydrate identification based on hydrate indicator
DENG Wei1,2(), LIANG Jin-Qiang1,3, ZHONG Tong1, HE Yu-Lin3, MENG Miao-Miao3
1. Guangzhou Marine Geological Survey,CGS,Guangzhou 510075,China
2. Key Laboratory of Marine Mineral Resources,Guangzhou Marine Geological Survey,Guangzhou 510075,China
3. Natural Gas Hydrate Engineering Technology Center,CGS,Guangzhou 510700,China
全文: PDF(8354 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

速度是水合物勘查的重要参数,但是速度的影响因素众多,给高精度识别水合物带来一定困难。水合物储层岩石物理是研究多种因素对速度影响的有效手段之一。考虑到水合物储层未固结等特征,本文采用SCA-DEM模型,重点对比了孔隙度、饱和度等对纵横波速度以及AVO特征的影响,并构建了一种新的水合物指示因子,消除了由于孔隙变化带来的假异常。岩石物理分析表明该指示因子与水合物饱和度具有很高的相关性。然后,推导得到了基于水合物指示因子的地震反射特征方程,并基于该方程反演得到了水合物指示因子,反演结果与实际钻探结果吻合较好,表明该方法具有一定的实用性以及科学性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓炜
梁金强
钟桐
何玉林
孟苗苗
关键词 水合物指示因子岩石物理叠前反演琼东南    
Abstract

Compared with the post-stack inversion,coupling features in impedance are complex.The pre-stack inversion can make full use of the information such as the amplitude and travel time and frequency of the prestack seismic data,more diverse logging data and geology,and yields geophysical parameters that are highly correlated with hydrate saturation.Seismic rock physics modeling of hydrate reservoirs is the basis for hydrate-oriented prestack inversion.Considering the microscopic pore structure and composition characteristics of hydrate reservoir rocks,this paper introduces SCA-DEM rock physics modeling methods.The influence of physicochemical parameters on the elastic characteristics of rock and its role in AVO characteristics are analyzed.The geophysical response of hydrates is discussed and a new hydrate seismic indicator is constructed.Seismic rock physics analysis shows that the indicator has a high correlation with hydrate saturation.Then,the seismic reflection equation based on hydrate indicator is derived and the feasibility analysis of the inversion is carried out. Finally, based on geological prior, we get the indicator using the actual pre-stack data and logging data in the Qiongdongnan sea of South China Sea.The real data application shows that the method has certain practicability and scientificity.

Key wordshydrate indicator    rock physics    pre-stack inversion    Qiongdongnan area
收稿日期: 2019-11-13      修回日期: 2020-09-10      出版日期: 2021-02-20
ZTFLH:  P631.4  
基金资助:中国地质调查局地质调查项目“南海北部天然气水合物重点区资源调查”(DD20190217);自然资源部海底矿产资源重点实验室开放基金“基于温压控制建模的水合物指示因子直接反演”(KLMMR-2018-A-04)
作者简介: 邓炜(1992-),男,四川达州人,工程师,主要从事天然气水合物地震检测研究工作。Email:hahens@163.com
引用本文:   
邓炜, 梁金强, 钟桐, 何玉林, 孟苗苗. 基于水合物指示因子的地震识别方法[J]. 物探与化探, 2021, 45(1): 57-67.
DENG Wei, LIANG Jin-Qiang, ZHONG Tong, HE Yu-Lin, MENG Miao-Miao. Hydrate identification based on hydrate indicator. Geophysical and Geochemical Exploration, 2021, 45(1): 57-67.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.2511      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I1/57
Fig.1  南海琼东南海域一口含水合物井的部分测井曲线
Fig.2  建模结果与对应的硬孔隙度
Fig.3  孔隙度为45%时纵横波速度与水合物饱和度、含气饱和度的关系
a—纵波速度与水合物饱和度、含气饱和度的关系;b—横波速度与水合物饱和度、含气饱和度的关系
Fig.4  纵横波速度与孔隙度、含气饱和度的关系
a—纵波速度与孔隙度、含气饱和度的关系;b—横波速度与孔隙度、含气饱和度的关系
Fig.5  不同含气饱和度下纵横波速度与孔隙度的关系
a—纵波速度与孔隙度的关系;b—横波速度与孔隙度的关系
Fig.6  南海琼东南海域典型高饱和度水合物与低饱和度水合物井速度—孔隙度测井交会分析
a—w1纵波速度与孔隙度的关系;b—w2横波速度与孔隙度的关系
Fig.7  水合物顶底AVO分析
a—水合物顶AVO特征;b—水合物底AVO特征
Fig.8  w3井水合物顶底AVO特征曲线
a—水合物底AVO特征;b—水合物顶AVO特征
Fig.9  水合物饱和度与孔隙度的关系
a—w2水合物饱和度与孔隙度的关系;b—w3水合物饱和度与孔隙度的关系
Fig.10  w2井Fp与纵波速度以及纵波阻抗相对于水合物饱和度的交会分析
a—Fp与纵波速度的交会;b—Fp与纵波阻抗的交会
Fig.11  水合物指示因子反演流程
Fig.12  琼东南研究区某测线地震剖面
a—小角度部分角度叠加数据(1°~10°);b—中角度部分角度叠加数据(11°~20°);c—大角度部分角度叠加数据(21°~30°)
Fig.13  孔隙度反演结果
Fig.14  vp?(a)与v?s(b)反演结果
Fig.15  Fp反演结果
Fig.16  南海琼东南海域阻抗与孔隙反射系数关系拟合
a—w1井纵波阻抗与孔隙反射系数关系;b—w2井纵波阻抗与孔隙反射系数关系
Fig.17  w1井孔隙度预测结果
Fig.18  w2井孔隙度预测结果
[1] Dickens G R, Quinby H M S. Methane hydrate stability in seawater[J]. Geophysical Research Letters, 1994,21(19):2115-2118.
doi: 10.1029/94GL01858
[2] Kvenvolden K A. Gas hydrates:Geological perspective and global change[J]. Review in Geophysics, 1993,31:173-187.
[3] Collett T S. Gas hydrate resources of the United States[G]// Gautier D L,Dolton G L,Takahashi K I,et al.National Assessment of United States Oil and Gas Resources on CD-ROM,U.S., 1995.
[4] 梁金强, 付少英, 陈芳, 等. 南海东北部陆坡海底甲烷渗漏及水合物成藏特征[J]. 天然气地球科学, 2017,28(5):761-770.
[4] Liang J Q, Fu S Y, Chen F, et al. Characteristics of methane leakage and hydrate accumulation in the continental slope of the northeastern South China Sea[J]. Natural Gas Geoscience, 2017,28(5):761-770.
[5] 杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017,24(4):1-14.
[5] Yang S X, Liang J Q, Lu J A, et al. New understanding of gas hydrate accumulation characteristics and main controlling factors in Shenhu sea area in the northern South China Sea[J]. Earth Science Frontiers, 2017,24(4):1-14.
[6] 郭依群, 杨胜雄, 梁金强, 等. 南海北部神狐海域高饱和度天然气水合物分布特征[J]. 地学前缘, 2017,24(4):24-31.
[6] Guo Y Q, Yang S X, Liang J Q, et al. Distribution characteristics of high saturation gas hydrate in Shenhu sea area in the northern South China Sea[J]. Geoscience, 2017,24(4):24-31.
[7] Waite W, Helgerud M B, Nur A, et al. Laboratory measurements of compressional and shear wave speeds through methane hydrate[G]// Holder G D,Bishnoi P R. Gas hydrates:Challenges for the future:Annals of the New York Academy of Science, 2000: 1003-1010.
[8] Hamilton E L. Geoacoustic modeling of the sea floor[J]. Journal of the Acoustical Society of America, 1980,68:1313-1340.
doi: 10.1121/1.385100
[9] 胡高伟, 业渝光, 张剑, 等. 沉积物中天然气水合物微观分布模式及其声学响应特征[J]. 天然气工业, 2010,30(3):120-124.
doi: 10.3787/j.issn.10000976.2010.03.031
[9] Hu G W, Ye Y G, Zhang J, et al. Microscopic distribution patterns and acoustic response characteristics of natural gas hydrates in sediments[J]. Natural Gas Industry, 2010,30(3):120-124.
[10] 胡高伟, 李承峰, 业渝光, 等. 沉积物孔隙空间天然气水合物微观分布观测[J]. 地球物理学报, 2014,57(5):1675-1682.
doi: 10.6038/cjg20140530
[10] Hu G W, Li C F, Ye Y G, et al. Microscopic distribution observation of gas hydrate in sediment pore space[J]. Chinese Journal of Geophysics, 2014,57(5):1675-1682.
[11] 潘豪杰, 刘堂晏, 邬龙, 等. 天然气水合物赋存形态识别及其饱和度预测[J]. 地球物理学进展, 2014,29(4):1735-1740.
doi: 10.6038/pg20140432
[11] Pan H J, Liu T Y, Wu L, et al. Gas hydrate occurrence pattern recognition and saturation prediction[J]. Progress in Geophysics, 2014,29(4):1735-1740.
[12] Helgerud M B, Dvorkin J, Nur A, et al. Elastic-wave velocity in marine sediments with gas hydrates:Effective medium modeling[J]. Geophysical Research Letters, 1999,26:2021-2024.
doi: 10.1029/1999GL900421
[13] Sava D, Hardage B. Rock-physics characterization of hydrate-bearing deepwater sediments[J]. The Leading Edge, 2006,25:616-619.
doi: 10.1190/1.2202666
[14] Domenico S N. Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir[J]. Geophysics, 1976,41:882-894.
doi: 10.1190/1.1440670
[15] 王秀娟, 吴时国, 王吉亮, 等. 南海北部神狐海域天然气水合物分解的测井异常[J]. 地球物理学报, 2013,56(8):2799-2807.
doi: 10.6038/cjg20130828
[15] Wang X J, Wu S G, Wang J L, et al. Logging anomalies of natural gas hydrate decomposition in the Shenhu sea area in the northern South China Sea[J]. Chinese Journal of Geophysics, 2013,56(8):2799-2807.
[16] Wang Z. Fundamentals of seismic rock physics[J]. Geophysics, 2012,66(2):398-412.
doi: 10.1190/1.1444931
[17] Chatterjee R, Singha D K, Ojha M, et al. Porosity estimation from pre-stack seismic data in gas-hydrate bearing sediments, Krishna-Godavari basin,India[J]. Journal of Natural Gas Science and Engineering, 2016,33:562-572.
doi: 10.1016/j.jngse.2016.05.066
[18] Kumar R, Das B, Chatterjee R, et al. A methodology of porosity estimation from inversion of post-stack seismic data[J]. Journal of Natural Gas Science and Engineering, 2016,28(1):356-364.
doi: 10.1016/j.jngse.2015.12.028
[19] Lee M W, Collett T S. In-situ gas hydrate saturations estimated from various well logs at Mount Elbert well, North Slope of Alaska[J]. Marine and Petroleum Geology, 2011,28:439-449.
doi: 10.1016/j.marpetgeo.2009.06.007
[20] Yin X Y, Zong Z Y, Wu G C. Research on seismic fluid identification driven by rock physics[J]. Science China Earth Sciences, 2015,58(2):159-171.
doi: 10.1007/s11430-014-4992-3
[21] Aki K, Richards P G. Quantitative seismology[M]. California:University Science Books, 2002.
[22] Shuey R T. A simplification of the Zoeppritz equations[J]. Geophysics, 1985,50(4):609-614.
doi: 10.1190/1.1441936
[23] Smith G C, Gidlow P M. Wighted stacking for rock property estimation and detection of gas[J]. Geophysical Prospecting, 1987,35(9):992-1014.
[24] Fatti J L, Smith G C, Vail P J, et al. Detection of gas in sandstone reservoirs using AVO analysis:A 3-D seismic case history using the Geostack technique[J]. Geophysics, 1994,59(9):1362-1376.
doi: 10.1190/1.1443695
[25] Russell B H, Gray D, Hampson D P. Linearized AVO inversion and poroelasticity[J]. Geophysics, 2011,76(3):C19-C29.
doi: 10.1190/1.3555082
[26] Yin X Y, Zhang S X. Bayesian inversion for effective pore-fluid bulk modulus based on fluid-matrix decoupled amplitude variation with offset approximation[J]. Geophysics, 2014,79(5):R221-R232.
doi: 10.1190/GEO2013-0372.1
[27] Connolly P. Elastic impedance[J]. The Leading Edge, 1999,18(4):438-452.
doi: 10.1190/1.1438307
[28] 邓炜, 印兴耀, 宗兆云. 基于等效流体体积模量直接反演的流体识别方法[J]. 石油地球物理勘探, 2017,52(2):315-325.
[28] Deng W, Yin X Y, Zong Z Y. Fluid identification method based on direct inversion of equivalent fluid volume modulus[J]. Oil Geophysical Prospecting, 2017,52(2):315-325.
[29] 沙志彬, 万晓明, 赵忠泉, 等. 叠前同时反演技术在珠江口盆地西部海域天然气水合物储层预测中的应用[J]. 物探与化探, 2019,43(3):476-485.
[29] Sha Z B, Wan X M, Zhao Z Q, et al. Application of pre-stack simultaneous inversion technique in gas hydrate reservoir prediction in the western waters of the Pearl River Mouth Basin[J]. Geophysical and Geochemical Exploration, 2019,43(3):476-485.
[30] Hill R. A self-consistent mechanics of composite materials[J]. Journal of the Mechanics and Physics of Solids, 1965,13:213-222.
doi: 10.1016/0022-5096(65)90010-4
[1] 商伟, 张云银, 孔省吾, 刘峰. 基于叠前多参数敏感因子融合的浊积岩储层识别技术[J]. 物探与化探, 2022, 46(4): 904-913.
[2] 谢锐, 阎建国, 陈琪. 叠前各向异性系数反演及在裂缝预测中的应用[J]. 物探与化探, 2022, 46(4): 968-976.
[3] 张德明, 刘志刚, 臧殿光, 廖显锋, 刘志毅, 刘国宝. 基于叠前同时反演的致密砂岩储层预测及含气性识别——以苏里格S区块为例[J]. 物探与化探, 2022, 46(3): 645-652.
[4] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[5] 刘浩杰, 陈雨茂, 王延光, 宗兆云, 吴国忱, 侯庆杰. 粘弹介质叠前四参数同步反演及应用[J]. 物探与化探, 2021, 45(1): 140-148.
[6] 王超, 宋维琪, 林彧涵, 张云银, 高秋菊, 魏欣伟. 基于叠前反演的地应力预测方法应用[J]. 物探与化探, 2020, 44(1): 141-148.
[7] 包培楠, 王维红, 李文龙, 褚松杰. CRP道集优化处理及其在大庆油田S区的应用[J]. 物探与化探, 2019, 43(5): 1030-1037.
[8] 侯波, 康洪全, 程涛. 综合成岩作用和孔隙形状的岩石物理模型及其应用[J]. 物探与化探, 2019, 43(1): 161-167.
[9] 章雄, 张本健, 梁虹, 徐敏, 张洞君, 曾旖. 波形指示叠前地震反演方法在致密含油薄砂层预测中的应用[J]. 物探与化探, 2018, 42(3): 545-554.
[10] 周游, 高刚, 桂志先, 周倩, 蔡伟祥, 龚屹, 杨亚华. 灰质发育背景下识别浊积岩优质储层的技术研究——以东营凹陷董集洼陷为例[J]. 物探与化探, 2017, 41(5): 899-906.
[11] 杨东升, 刘春成, 曹思远, 黄饶. 一种预测天然气饱和度的新方法[J]. 物探与化探, 2016, 40(5): 968-973.
[12] 何丽娟, 王振峰, 邓勇, 张毅, 钟泽红, 张志让, 王利杰. 虚拟井技术在琼东南深水区储层预测中的应用[J]. 物探与化探, 2016, 40(2): 390-397.
[13] 李尧. 基线差密度校正法的应用——以蓬莱9-1油田叠前反演处理为例[J]. 物探与化探, 2015, 39(5): 1020-1026.
[14] 张旭东. 琼东南海域天然气水合物地震反射特征[J]. 物探与化探, 2014, 38(6): 1152-1158.
[15] 蔡克汉, 张盟勃, 高改, 刘峰, 杜广宏, 许磊明. 基于叠前反演的储层预测技术在陕北黄土塬白云岩气藏的应用[J]. 物探与化探, 2014, 38(6): 1164-1171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com