Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (3): 736-746    DOI: 10.11720/wtyht.2024.1179
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
玛湖凹陷风城组复杂岩性组合横波预测方法探索
钟厚财1(), 刘振宇1, 朱哲1, 屈琳1, 张珊1, 姚燕飞2, 范蓉蓉1
1.中国石油集团东方地球物理公司研究院 乌鲁木齐分院,新疆 乌鲁木齐 830016
2.中国石油集团东方地球物理公司 物探技术研发中心,河北 涿州 072750
Exploring the shear-wave prediction method for complex lithologic assemblages of the Fengcheng Formation in the Mahu sag
ZHONG Hou-Cai1(), LIU Zhen-Yu1, ZHU Zhe1, QU Lin1, ZHANG Shan1, YAO Yan-Fei2, FAN Rong-Rong1
1. Urumqi Branch,Geophysical Research Institute,BGP,CNPC,Urumqi 830016,China
2. Geophysical Technology Research and Development Center,BGP,CNPC,Zhuozhou 072750,China
全文: PDF(9611 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

玛湖凹陷二叠系风城组复杂岩性组合横波预测技术攻关是准确落实该区油气富集区的重点,也是难点,不同岩性分类型岩石物理建模技术攻关是核心。针对岩性类型多样、岩石矿物组分复杂的关键问题,开展不同岩性分类型岩石物理建模技术攻关。形成了基于复杂岩性“分层段、分岩性、分模型”的三分法横波速度预测技术和基于复杂岩石矿物组分“舍轻就重,同类合并”为原则的碱湖型云化致密储层干岩石骨架建立技术,并对比优选了自洽模型(self-consistent)开展了云化砂岩段储层的岩石物理建模横波计算。该技术的探索应用,在玛湖凹陷风城组复杂岩性组合横波预测及甜点储层预测中取得了较好的效果,为该区井位部署和储量落实提供了依据,为类似地区油气勘探积累了宝贵的经验。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟厚财
刘振宇
朱哲
屈琳
张珊
姚燕飞
范蓉蓉
关键词 岩石物理建模横波预测碱湖型致密储层复杂矿物玛湖凹陷    
Abstract

Research on shear-wave prediction for complex lithologic assemblages of the Permian Fengcheng Formation in the Mahu sag is critical but challenging for accurately identifying hydrocarbon accumulation zones in the sag.The key to the prediction is to make breakthroughs in petrophysical modeling based on different lithologies.Given various lithologic types and intricate mineral compositions,this study delved into petrophysical modeling based on different lithologies.Consequently,this study developed an interval-,lithology-,and model-specific shear-wave prediction technique for complex lithologies.Furthermore,it established a technique for building a dry rock matrix for alkali lake-type dolomitized tight reservoirs by highlighting the major rock mineral compositions and merging the same types of rock mineral compositions.Additionally,the self-consistent model was selected for shear-wave calculation in the petrophysical modeling of dolomitized sandstone reservoirs.These techniques have been applied in the Fengcheng Formation of the Mahu Sag,achieving encouraging application results in both the shear-wave prediction of complex lithologic assemblages and the prediction of sweet spots.This study will provide a basis for well deployment and reserves determination in the area and offer valuable experience for oil and gas exploration in similar areas.

Key wordspetrophysical modeling    shear-wave prediction    alkali lake type    tight reservoir    complex mineral    Mahu sag
收稿日期: 2023-05-05      修回日期: 2024-02-20      出版日期: 2024-06-20
ZTFLH:  P631.4  
基金资助:中国石油东方地球物理勘探有限责任公司重大科技项目(03-02-2022)
作者简介: 钟厚财(1986-),男,2009年毕业于西南石油大学勘查技术与工程专业,主要从事地震资料综合解释与物探方法研究工作。Email:zhonghouc02@cnpc.com.cn
引用本文:   
钟厚财, 刘振宇, 朱哲, 屈琳, 张珊, 姚燕飞, 范蓉蓉. 玛湖凹陷风城组复杂岩性组合横波预测方法探索[J]. 物探与化探, 2024, 48(3): 736-746.
ZHONG Hou-Cai, LIU Zhen-Yu, ZHU Zhe, QU Lin, ZHANG Shan, YAO Yan-Fei, FAN Rong-Rong. Exploring the shear-wave prediction method for complex lithologic assemblages of the Fengcheng Formation in the Mahu sag. Geophysical and Geochemical Exploration, 2024, 48(3): 736-746.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1179      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I3/736
Fig.1  复杂岩性组合横波预测流程
Fig.2  玛湖凹陷典型井风城组火山岩岩芯及岩石薄片
Fig.3  MH025井火山岩段横波速度预测结果
Fig.4  玛湖凹陷典型井风城组砂砾岩岩芯及岩石薄片
Fig.5  MH025井砂砾岩段模型横波预测结果
Fig.6  玛湖凹陷典型井风城组云化砂岩岩芯及岩石薄片照片
Fig.7  云化砂岩储层多矿物简化分析
Fig.8  MH025井云化砂岩段横波速度预测结果
Fig.9  MH025井全井段横波速度预测结果
Fig.10  玛南斜坡风城组预测横波与实测横波交会
Fig.11  玛南斜坡纵横波速度比反演剖面
Fig.12  玛南斜坡纵横波速度比反演平面
a—砂砾岩储层;b—火山岩储层;c—云化砂岩储层
[1] 支东明, 曹剑, 向宝力, 等. 玛湖凹陷风城组碱湖烃源岩生烃机理及资源量新认识[J]. 新疆石油地质, 2016, 37(5):499-506.
[1] Zhi D M, Cao J, Xiang B L, et al. Fengcheng alkaline lacustrine source rocks of Lower Permian in Mahu Sag in Junggar Basin:Hydrocarbon generation mechanism and petroleum resources reestimation[J]. Xinjiang Petroleum Geology, 2016, 37(5):499-506.
[2] 白雨, 汪飞, 牛志杰, 等. 准噶尔盆地玛湖凹陷二叠系风城组烃源岩生烃动力学特征[J]. 岩性油气藏, 2022, 34(4):116-127.
[2] Bai Y, Wang F, Niu Z J, et al. Hydrocarbon generation kinetics of source rocks of Permian Fengcheng Formation in Mahu Sag,Junggar Basin[J]. Lithologic Reservoirs, 2022, 34(4):116-127.
[3] 谢月芳, 张纪. 岩石物理模型在横波速度估算中的应用[J]. 石油物探, 2012, 51(1):65-70.
doi: 10.3969/j.issn.1000-1441.2012.01.009
[3] Xie Y F, Zhang J. Application of petrophysical model in shear wave velocity estimation[J]. Geophysical Prospecting for Petroleum, 2012, 51(1):65-70.
[4] 马淑芳, 韩大匡, 甘利灯, 等. 地震岩石物理模型综述[J]. 地球物理学进展, 2010, 25(2):460-471.
[4] Ma S F, Han D K, Gan L D, et al. A review of seismic rock physics models[J]. Progress in Geophysics, 2010, 25(2):460-471.
[5] Han D H, Nur A, Morgan D. Effects of porosity and clay content on wave velocities in sandstones[J]. Geophysics, 1986, 51(11):2093-2107.
[6] Castagna J P. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks[J]. Geophysics, 1985, 50(4):571.
[7] Krief M, Garat J, Stellingwerff J, et al. A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic)[J]. Log Analyst, 1990,31:355-369.
[8] 陈小根, 武立岐. 基于多元回归方法的岩石物理性质预测模型研究[J]. 现代矿业, 2018, 34(8):64-68.
[8] Chen X G, Wu L Q. Study on the prediction model of rock physical property based on multiple regression method[J]. Modern Mining, 2018, 34(8):64-68.
[9] 李春鹏. 基于贝叶斯判定的反演域岩石物理交会[J]. 物探化探计算技术, 2018, 40(5):594-600.
[9] Li C P. Rock physics crossplot in inversion domain based on Bayesian decision[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018, 40(5):594-600.
[10] Pride S R. Relationships between seismic and hydrological properties[M]//Water Science and TechnologyLibrary. Dordrecht: Springer Netherlands,2005:253-290.
[11] Lee M W. A simple method of predicting S-wave velocity[J]. Geophysics, 2006, 71(6):F161.
[12] Xu S Y, White R E. A new velocity model for clay-sand mixtures1[J]. Geophysical Prospecting, 1995, 43(1):91-118.
[13] 郭栋, 印兴耀, 吴国忱. 横波速度计算方法与应用[J]. 石油地球物理勘探, 2007, 42(5):535-538.
[13] Guo D, Yin X Y, Wu G C. Computational approach of S-wave velocity and application[J]. Oil Geophysical Prospecting, 2007, 42(5):535-538.
[14] 邵才瑞, 印兴耀, 张福明, 等. 利用常规测井资料基于岩石物理和多矿物分析反演横波速度[J]. 地球科学:中国地质大学学报, 2009, 34(4):699-707.
[14] Shao C R, Yin X Y, Zhang F M, et al. Shear wave velocity inversion with routine well logs based on rock physics and multi-minerals analysis[J]. Earth Science-Journal of China University of Geosciences, 2009, 34(4):699-707.
[15] Kazatchenko E, Markov M, Mousatov A, et al. Joint inversion of conventional well logs for evaluation of double-porosity carbonate formations[J]. Journal of Petroleum Science and Engineering, 2007, 56(4):252-266.
[16] Kumar M, Han D H. Pore shape effect on elastic properties of carbonate rocks[C]// SEG Technical Program Expanded Abstracts 2005.Society of Exploration Geophysicists,2005:1477-1480.
[17] 吴志华, 印兴耀. 碳酸盐岩储层横波速度估算[C]// 深圳: SPG/SEG国际地球物理会议论文集,勘探地球物理学家学会,2011:56-59.
[17] Wu Z H, Yin X Y. S-wave velocity prediction for carbonate reservoirs[C]// Expanded Abstracts of SPG/SEG International Geophysical Conference.Shenzhen, China: Society of Exploration Geophysicists,2011:56-59.
[18] Sharma R, Prasad M, Surve G, et al. On the applicability of Gassmann model in carbonates[C]// SEG Technical Program Expanded Abstracts 2006.Society of Exploration Geophysicists,2006:1866-1870.
[19] Eugenia R. Elastic rock properties of tight gas sandstones for reservoir characterization at Rulison Filed,Colorado[D]. Colorado: Colorado School of Mines, 2005.
[20] 印兴耀, 刘倩. 致密储层各向异性地震岩石物理建模及应用[J]. 中国石油大学学报:自然科学版, 2016, 40(2):52-58.
[20] Yin X Y, Liu Q. Anisotropic rock physics modeling of tight sandstone and applications[J]. Journal of China University of Petroleum:Edition of Natural Science, 2016, 40(2):52-58.
[21] 李龙. 碎屑岩致密储层岩石物理模量定量表征[D]. 青岛: 中国石油大学(华东), 2014.
[21] Li L. Quantitative characterization for rock physics modulus of tight clastic reservoir[J]. Qingdao:China University of Petroleum, 2014.
[22] 吕正祥, 廖哲渊, 李岳峰, 等. 玛湖凹陷二叠系风城组碱湖云质岩储层成岩作用[J]. 岩性油气藏, 2022, 34(5):26-37.
[22] Lyu Z X, Liao Z Y, Li Y F, et al. Diagenesis of alkaline lacustrine dolomitic reservoirs of Permian Fengcheng Formation in Mahu Sag[J]. Lithologic Reservoirs, 2022, 34(5):26-37.
[23] 刘文彬. 准噶尔盆地西北缘风城组沉积环境探讨[J]. 沉积学报, 1989, 7(1):61-70.
[23] Liu W B. Study on sedimentary environment of Fengcheng Formation at Northwest margin of Junggar Basin[J]. Acta Sedimentologica Sinica, 1989, 7(1):61-70.
[24] 雷海艳, 郭佩, 孟颖, 等. 玛湖凹陷二叠系风城组页岩油储层孔隙结构及分类评价[J]. 岩性油气藏, 2022, 34(3):142-153.
[24] Lei H Y, Guo P, Meng Y, et al. Pore structure and classification evaluation of shale oil reservoirs of Permian Fengcheng Formation in Mahu Sag[J]. Lithologic Reservoirs, 2022, 34(3):142-153.
[25] 徐苗苗. 火山岩储层岩石物理建模与叠前地震反演方法研究[D]. 东营: 中国石油大学(华东), 2019.
[25] Xu M M. Study on petrophysical modeling and prestack seismic inversion method of volcanic reservoir[D]. Dongying: China University of Petroleum(Huadong), 2019.
[26] 陈树民, 李来林, 赵海波. 松辽盆地白垩系火山岩储层岩石物理声学特性分析[J]. 岩石学报, 2010, 26(1):14-20.
[26] Chen S M, Li L L, Zhao H B. Physical analysis of acoustic characteristics of Cretaceous volcanic rocks in the Songliao Basin[J]. Acta Petrologica Sinica, 2010, 26(1):14-20.
[27] 李福祥, 王雪, 张驰, 等. 基于边界点的支持向量机分类算法[J]. 陕西理工大学学报:自然科学版, 2022, 38(3):30-38.
[27] Li F X, Wang X, Zhang C, et al. Support vector machine classification algorithm based on boundary points[J]. Journal of Shaanxi University of Technology:Natural Science Edition, 2022, 38(3):30-38.
[28] 于宝利, 赵小辉, 瞿建华, 等. 岩石物理建模技术在玛湖西斜坡储集层预测中的应用[J]. 新疆石油地质, 2016, 37(6):720-725.
[28] Yu B L, Zhao X H, Qu J H, et al. Application of petrophysical modeling technique in favorable reservoir prediction in western slope of Mahu Sag,Junggar Basin[J]. Xinjiang Petroleum Geology, 2016, 37(6):720-725.
[29] 王贤, 郑伟, 党志敏, 等. 玛南地区中下二叠统有利储层预测[J]. 新疆石油天然气, 2021, 17(2):1-6.
[29] Wang X, Zheng W, Dang Z M, et al. Prediction of favorable reservoirs of Middle and Lower Permian in Manan area[J]. Xinjiang Oil & Gas, 2021, 17(2):1-6.
[30] 冯有良, 张义杰, 王瑞菊, 等. 准噶尔盆地西北缘风城组白云岩成因及油气富集因素[J]. 石油勘探与开发, 2011, 38(6):685-692.
[30] Feng Y L, Zhang Y J, Wang R J, et al. Dolomites genesis and hydrocarbon enrichment of the Fengcheng Formation in the northwestern margin of Junggar Basin[J]. Petroleum Exploration and Development, 2011, 38(6):685-692.
[31] 周琦杰. 基于岩石物理理论的致密砂岩等效模型构建及应用[D]. 东营: 中国石油大学(华东), 2017.
[31] Zhou Q J. Construction and application of equivalent model of tight sandstone based on petrophysical theory[D]. Dongying: China University of Petroleum(Huadong), 2017.
[32] 李宏兵, 张佳佳. 多重孔岩石微分等效介质模型及其干燥情形下的解析近似式[J]. 地球物理学报, 2014, 57(10):3422-3430.
doi: 10.6038/cjg20141028
[32] Li H B, Zhang J J. A differential effective medium model of multiple-porosity rock and its analytical approximations for dry rock[J]. Chinese Journal of Geophysics, 2014, 57(10):3422-3430.
[1] 刘庆, 张镇, 杨帅, 李枫凌. 基于灰色关联与层次分析的脆性指数预测方法——以准噶尔盆地吉木萨尔凹陷芦草沟组致密储层为例[J]. 物探与化探, 2023, 47(4): 944-953.
[2] 张德明, 刘志刚, 臧殿光, 廖显锋, 刘志毅, 刘国宝. 基于叠前同时反演的致密砂岩储层预测及含气性识别——以苏里格S区块为例[J]. 物探与化探, 2022, 46(3): 645-652.
[3] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[4] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[5] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com