Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (1): 134-141    DOI: 10.11720/wtyht.2024.2576
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于孔喉分布碳酸盐岩储层类型划分
赵冰()
中国石化江汉油田勘探开发研究院,湖北 武汉 430074
Classification of carbonate reservoirs based on pore throat radius distributions
ZHAO Bing()
Exploration and Development Research Institute,Sinopec Jianghan Oilfield Company,Wuhan 430074,China
全文: PDF(5937 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对储集空间多样、非均质性强的碳酸盐岩储层,由于内部孔隙结构复杂,常规的岩石物理分类方法难以准确地划分储层类别,特别是对孔喉半径呈现双峰、三峰等多峰分布的复杂多孔隙系统。本文以中东某油田M组碳酸盐岩储层为研究对象,明确了岩石内部孔隙结构决定孔喉半径分布特征,进而影响岩石的类型划分。因此从孔喉大小分布入手,考虑多峰样品中每个峰对应孔隙组分对岩石储集空间及渗流作用的贡献,以累积渗透率曲线为依据,提出了结合孔喉大小及其占比的组合孔喉半径参数(Rmax*)来表征岩石的孔隙结构,并对选取的114块双峰及43块三峰岩样进行分类。结合物性、压汞、薄片、测井等资料,对每类储层特征展开了深入研究。结果表明,相比于利用单一孔喉半径(Winland R35)的分类结果,Rmax*可以更好地表征储层孔隙结构,提高储层的分类效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵冰
关键词 碳酸盐岩岩石物理分类Winland R35孔喉半径分布Rmax*    
Abstract

Since carbonate reservoirs characterized by diverse reservoir spaces and high heterogeneity exhibit intricate internal pore structures,conventional petrophysical classification methods fail to accurately classify these reservoirs,especially the reservoirs with complex porous systems whose pore throat radii manifest a multimodal(e.g.,bimodal,and trimodal) distribution.By investigating the M Formation's carbonate reservoirs in an oil field in the Middle East,this study clarified that the internal pore structures of rocks determine the pore throat radius distribution,which in turn affects the classification of rocks.Hence,starting with the pore throat size distribution,and considering the contribution of pore components corresponding to each peak in the multimodal samples to the rock reservoir space and seepage capacity,this study proposed a pore throat radius parameter Rmax* combining pore throat sizes and their proportions to characterize the pore structures of rocks based on the cumulative permeability curve.Then,this study classified the selected 114 bimodal and 43 trimodal rock samples.Moreover,the characteristics of each type of reservoir were examined in depth by combining with physical properties,mercury injection data,thin-section observational data,and logs.The results of this study show that Rmax* can better characterize the pore structures of reservoirs and improve the reservoir classification effectiveness compared with the classification based on a single pore throat radius(R35,corresponding to mercury saturation of 35%).

Key wordscarbonate rock    petrophysical classification    Winland R35    pore throat radius distribution    Rmax*
收稿日期: 2022-12-26      修回日期: 2023-10-20      出版日期: 2024-02-20
ZTFLH:  TE122  
基金资助:中国石油化工股份有限公司科技攻关项目“江汉油田低渗致密油藏有效动用关键技术研究”(P20069-5)
作者简介: 赵冰(1995-),女,工程师,2017年毕业于长江大学勘查技术与工程专业,2020年毕业于长江大学地球探测与信息技术专业,获硕士学位,现主要从事油气藏开发工作。Email:605419901@qq.com
引用本文:   
赵冰. 基于孔喉分布碳酸盐岩储层类型划分[J]. 物探与化探, 2024, 48(1): 134-141.
ZHAO Bing. Classification of carbonate reservoirs based on pore throat radius distributions. Geophysical and Geochemical Exploration, 2024, 48(1): 134-141.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.2576      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I1/134
样品 孔隙度/% 渗透率/mD R35/μm 毛管压力曲线 孔喉半径分布 铸体薄片
1-1 26.04 9.35 1.09
1-2 25.84 12.34 0.96
2-1 16.59 2.55 0.67
2-2 17.59 1.83 0.60
Table 1  R35相近岩心分析资料对比
Fig.1  Rmax*参数求取示意
Fig.2  Rmax*R35对比
Fig.3  孔喉半径的半对数分布
Fig.4  孔渗分布
Fig.5  毛管压力曲线分布
a—基于Rmax*分类的毛管压力曲线分布;b—基于R35分类的毛管压力曲线分布
Fig.6  基于Rmax*分类的孔喉半径分布
Fig.7  每类储层岩性分布直方图
a—基于Rmax*分类的毛管压力曲线分布;b—基于R35分类的毛管压力曲线分布
Fig.8  分类测井效果对比
[1] Weger R J, Eberli G P, Baechle G T, et al. Quantification of pore structure and its effect on sonic velocity and permeability in carbonates[J]. AAPG Bulletin, 2009, 93(10):1297-1317.
doi: 10.1306/05270909001
[2] 李峰峰, 郭睿, 孙昭, 等. 中东M油田Mishrif组碳酸盐岩储集层分类及主控因素[J]. 东北石油大学学报, 2021, 45(5):1-12,131.
[2] Li F F, Guo R, Sun Z, et al. Classification and main controlling factors of carbonate reservoir of Mishrif Formation,M Oilfield in the Middle East[J] [J]. Journal of Northeast Petroleum University, 2021, 45(5):1-12,131.
[3] 谭学群, 廉培庆. 碳酸盐岩油藏岩石分类方法研究[J]. 科学技术与工程, 2013, 13(14):3963-3967.
[3] Tan X Q, Lian P Q. Classification research on rock typing of carbonate reservoir[J]. Science Technology and Engineering, 2013, 13(14):3963-3967.
[4] Folk R L. Practical petrographic classification of limestones[J]. AAPG Bulletin, 1959, 43(1):1-38.
[5] Eberli G P, Baechle G T, Anselmetti F S, et al. Factors controlling elastic properties in carbonate sediments and rocks[J]. The Leading Edge, 2003, 22(7):654-660.
doi: 10.1190/1.1599691
[6] 冯进, 赵冰, 张占松, 等. 珠江口盆地惠州凹陷储层测井产能分级与识别方法[J]. 物探与化探, 2020, 44(1):81-87.
[6] Feng J, Zhao B, Zhang Z S, et al. Classification and identification method of reservoir logging capacity in Huizhou depression of Pearl River mouth basin[J]. Geophysical and Geochemical Exploration, 2020, 44(1):81-87.
[7] Lonoy A. Making sense of carbonate pore systems[J]. AAPG Bulletin, 2006, 90(9):1381-1405.
doi: 10.1306/03130605104
[8] Purcell W R. Capillary pressures-their measurement using mercury and the calculation of permeability therefrom[J]. Journal of Petroleum Technology, 1949, 1(2):39-48.
doi: 10.2118/949039-G
[9] 王小敏, 樊太亮. 碳酸盐岩储层渗透率研究现状与前瞻[J]. 地学前缘, 2013, 20(5):166-174.
[9] Wang X M, Fan T L. Progress of research on permeability of carbonate rocks[J]. Earth Science Frontiers, 2013, 20(5):166-174.
[10] 王永诗, 高阳, 方正伟. 济阳坳陷古近系致密储集层孔喉结构特征与分类评价[J]. 石油勘探与开发, 2021, 48(2):266-278.
doi: 10.11698/PED.2021.02.04
[10] Wang Y S, Gao Y, Fang Z W, et al. Pore throat structure and classification of Paleogene tight reservoirs in Jiyang depression,Bohai Bay Basin,China[J]. Petroleum Exploration and Development, 2021, 48(2):266-278.
[11] 田瀚, 王贵文, 冯庆付, 等. 碳酸盐岩储层复杂孔隙结构研究现状及进展[J]. 科学技术与工程, 2020, 20(29):11825-11833.
[11] Tian H, Wang G W, Feng Q F, et al. Review and prospective of complex pore structure of carbonate reservoir[J]. Science Technology and Engineering, 2020, 20(29):11825-11833.
[12] Schowalter T T. Mechanics of secondary hydrocarbon migration and entrapment[J]. AAPG Bulletin, 1979, 63(5):723-760.
[13] Pittman E D. Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone (1)[J]. AAPG Bulletin, 1992, 76(2):191-198.
[14] Torres-Verdin C, Nelaon P. Permeability,porosity,and pore-throat size? A three-dimensional perspective[J]. Petrophysics, 2005, 46(6):452-455.
[15] 张萌, 乔占峰, 高计县, 等. 伊拉克哈法亚油田Mishrif组MB1-2亚段局限台地碳酸盐岩储层特征及评价[J]. 东北石油大学学报, 2020, 44(5):35-45,7.
[15] Zhang M, Qiao Z F, Gao J X, et al. Characteristics and evaluation of carbonate reservoirs in restricted platform in the MB1-2 Sub-Member of Mishrif Formation,Halfaya Oilfield,Iraq[J]. Journal of Northeast Petroleum University, 2020, 44(5):35-45,7.
[16] 王金娜, 王德海, 李宗宇, 等. 巴什托油气田石炭系巴楚组碳酸盐岩储层特征及控制因素[J]. 东北石油大学学报, 2019, 43(1):75-86,10.
[16] Wang J N, Wang D H, Li Z Y, et al. Characteristics and controlling factors of carbonate reservoir of Carboniferous Bachu Formation in Bashituo Oilfield[J]. Journal of Palaeogeography, 2019, 43(1):75-86,10.
[17] Tucher M E, Wright V P. Carbonate sedimentology[M]. London: Blackwell Scientific Publications,1990.
[18] 刘航宇, 田中元, 郭睿, 等. 复杂碳酸盐岩储层岩石分类方法研究现状与展望[J]. 地球物理学进展, 2017, 32(5):2057-2064.
[18] Liu H Y, Tian Z Y, Guo R, et al. Review and prospective of rock-typing for complex carbonate reservoirs[J]. Progress in Geophysics, 2017, 32(5):2057-2064.
[19] 石磊, 管耀, 冯进, 等. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1):78-86.
[19] Shi L, Guan Y, Feng J, et al. Multi-level division method of flow units for accurate permeability assessment of glutenite reservoirs:A case study of reservoir W53 of Paleogene Wenchang Formation in Lufeng oilfield[J]. Geophysical and Geochemical Exploration, 2022, 46(1):78-86.
[20] 刘航宇, 田中元, 徐振永. 基于分形特征的碳酸盐岩储层孔隙结构定量评价[J]. 岩性油气藏, 2017, 29(5):97-105.
[20] Liu H Y, Tian Z Y, Xu Z Y. Quantitative evaluation of carbonate reservoir pore structure based on fractal characteristics[J]. Lithologic Reservoirs, 2017, 29(5):97-105.
[21] 邱隆伟, 周涌沂, 高青松, 等. 大牛地气田石炭系—二叠系致密砂岩储层孔隙结构特征及其影响因素[J]. 油气地质与采收率, 2013, 20(6):15-18,22,112.
[21] Qiu L W, Zhou Y X, Gao Q S, et al. Study of porosity structure and its influences on Carboniferous and Permian tight sand reservoir rock in Danniudi gasfield,Ordos basin Petroleum[J]. Geology and Recovery Efficiency, 2013, 20(6):15-18,22,112.
[22] 葛东升, 蔡振华, 刘灵童, 等. 鄂尔多斯盆地东缘临兴地区太原组太2段致密砂岩储层孔隙结构及渗流特征分析[J]. 非常规油气, 2020, 7(6):11-17.
[22] Ge D S, Cai Z H, Liu L T, et al. Analysis on microscopic pore atructure and aeepage characteristics of tight sandstone reservoir of Tai 2 Section of Taiyuan Formation in Linxing area,Ordos Basin[J]. Unconventional Oil & Gas, 2020, 7(6):11-17.
[23] Al-qenae K J, Al-thaqafi S H, Al-khafji J O. New approach for the classification of rock Typing using a new technique for iso-pore throat lines in Winland’s Plot[C]// Baku: SPE Annual Caspian Technical Conference and Exhibition, 2015.
[24] 邱隆伟, 周涌沂, 高青松, 等. 大牛地气田石炭系—二叠系致密砂岩储层孔隙结构特征及其影响因素[J]. 油气地质与采收率, 2013, 20(6):15-18,22,112.
[24] Qiu L W, Zhou Y Y, Gao Q S, et al. Study of porosity structure and its influences on Carboniferous and Permian tight sand reservoir rock in Danniudi gasfield,Ordos basin Petroleum[J]. Geology and Recovery Efficiency, 2013, 20(6):15-18,22,112.
[25] 葛东升, 蔡振华, 刘灵童, 等. 鄂尔多斯盆地东缘临兴地区太原组太2段致密砂岩储层孔隙结构及渗流特征分析[J]. 非常规油气, 2020, 7(6):11-17.
[25] Ge D S, Cai Z H, Liu L T, et al. Analysis on microscopic pore structure and seepage characteristics of tight sandstone reservoir of Tai 2 section of Taiyuan Formation in Linxing area,Ordos Basin[J]. Unconventional Oil & Gas, 2020, 7(6):11-17.
[26] 李峰峰, 郭睿, 刘立峰, 等. 伊拉克M油田白垩系Mishrif组潟湖环境碳酸盐岩储集层成因机理[J]. 地球科学, 2021, 46(1):228-241.
[26] Li F F, Guo R, Liu L F, et al. Genesis of reservoirs of lagoon in the mishrif Formation,M oilfield,Iraq[J]. Earth Science, 2021, 46(1):228-241.
[27] 王瑞, 朱筱敏, 陈烨菲, 等. 滨里海盆地肯基亚克地区中、下石炭统碳酸盐岩储层特征与成岩作用[J]. 石油与天然气地质, 2012, 33(2):225-235.
[27] Wang R, Zhu X M, Chen Y F, et al. Diagenesis and reservoir characteristics of the Lower-Middle Carboniferous carbonates in Kenkyak area Pre-Caspian Basin[J]. Oil & Gas Geology, 2012, 33(2):225-235.
[1] 张昭, 殷全增, 张龙飞, 张大明, 张世晖, 黄国疏, 赵石峰, 杨彪, 台立勋, 张灯亮, 王进朝, 段刚. 综合物探技术在深部碳酸盐岩热储探测中的应用研究——以雄安新区为例[J]. 物探与化探, 2023, 47(4): 926-935.
[2] 但光箭, 周成刚, 刘云宏, 李相文, 张亮亮, 张明, 王春阳. 轮古西地区奥陶系碳酸盐岩古暗河系统地震特征分析[J]. 物探与化探, 2023, 47(2): 290-299.
[3] 张明, 李相文, 金梦, 郑伟, 张磊, 马文高. 超深断控缝洞型储层迭代反演方法——以富满油田为例[J]. 物探与化探, 2023, 47(1): 22-30.
[4] 陈星河, 张超谟, 朱林奇, 张冲, 张占松, 郭建宏. 联合核磁共振测井与Thomeer模型评价碳酸盐岩储层饱和度[J]. 物探与化探, 2023, 47(1): 110-119.
[5] 张建伟, 杨卓静, 王新杰, 李胜涛, 赵玉军. 碳储深孔超声成像测井系统设计与应用[J]. 物探与化探, 2022, 46(6): 1500-1506.
[6] 罗卫锋, 胡志方, 甘伏平, 张庆玉, 康海霞, 张云枭. 南方碳酸盐岩地区页岩气钻探井位选址中的综合物探方法应用[J]. 物探与化探, 2022, 46(4): 824-829.
[7] 薛野, 杨帆, 刘厚裕, 刘明, 赵苏城, 蓝加达. 彭水地区碳酸盐岩山地地表地震激发接收因素优选及效果[J]. 物探与化探, 2022, 46(3): 608-617.
[8] 马修刚, 周军, 蔡文渊, 王伟, 于伟高, 曹先军, 孙佩. 反射波成像与纵波径向速度成像在华北油田裂缝型碳酸盐岩储层勘探开发中的联合应用[J]. 物探与化探, 2020, 44(2): 271-277.
[9] 詹少全, 丁梅花, 李爱勇, 王慧, 王导丽, 梁杰. 贵州碳酸盐岩山区广域电磁法勘探应用[J]. 物探与化探, 2020, 44(1): 88-92.
[10] 杨敬雅, 李相文, 刘永雷, 徐博, 高江涛, 王茂, 吴江勇, 张泉. 一种基于随钻VSP地震地质导向的钻井轨迹高效优化方法及其应用[J]. 物探与化探, 2019, 43(2): 257-265.
[11] 党青宁, 崔永福, 陈猛, 赵锐锐, 刘伟明, 李勇军. OVT域叠前裂缝预测技术——以塔里木盆地塔中ZG地区奥陶系碳酸盐岩为例[J]. 物探与化探, 2016, 40(2): 398-404.
[12] 代鹏, 丁文龙, 曹自成, 余腾孝, 王鑫玉, 邱华标. 塔里木盆地塔中南坡地区奥陶系优质海相碳酸盐岩储层测井评价[J]. 物探与化探, 2016, 40(2): 243-249.
[13] 李相文, 刘永雷, 但光箭, 安海亭, 张建伟, 赵婧, 李梁, 李树珍. 方位AVO技术在碳酸盐岩缝洞型储层含流体预测中的研究与应用[J]. 物探与化探, 2016, 40(1): 129-134.
[14] 杨宋玲, 李方林, 黄建军, 王娟, 黄梦妮, 王祥, 周青. 碳酸盐岩风化过程中次生富集作用对土壤地球化学异常评价的影响——以浙江下铜山铅锌异常评价为例[J]. 物探与化探, 2015, 39(6): 1124-1131.
[15] 田瀚, 杨敏. 碳酸盐岩缝洞型储层测井评价方法[J]. 物探与化探, 2015, 39(3): 545-552.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com