Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (3): 826-834    DOI: 10.11720/wtyht.2023.1321
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险
弓秋丽1,2(), 杨剑洲1,2, 王振亮1,2, 严慧3
1.自然资源部 地球化学探测重点实验室,河北 廊坊 065000
2.中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
3.自然资源部 长沙矿产资源监督检测中心,湖南 长沙 410007
Migration of heavy metals in the soil-tea plant system and health risks of drinking tea: A case study of Qiongzhong County, Hainan Province
GONG Qiu-Li1,2(), YANG Jian-Zhou1,2, WANG Zhen-Liang1,2, YAN Hui3
1. Key Laboratory of Geochemical Exploration of Ministry of Natural Resources, Langfang 065000, China
2. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences (CAGS), Langfang 065000, China
3. Changsha Supervision and Inspection Center of Mineral Resources, Ministry of Natural Resources, Changsha 410007, China
全文: PDF(2497 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

以海南琼中3个生态茶园为研究区,采集土壤以及对应茶树的根、茎、叶(包含老叶、新叶和嫩芽),对重金属在土壤—茶树系统中的迁移特征进行研究,分析重金属的迁移规律和饮茶所致健康风险。结果表明,土壤中Pb、Cr、Cd、As和Hg含量略高于海南岛土壤背景值,没有明显的累积。重金属在茶树不同器官的富集程度差异明显,其中Cr、Zn、Pb、Hg和Cd在根部富集,而Cu和Ni在叶片富集;Pb、Cd和Hg在老叶中的含量比在嫩叶和芽中的含量高,表现为随着茶叶生长而累积的特征;Cu、Ni和Zn在芽中的含量高于老叶和新叶,表现出在茶叶生长部位富集的特征。生物富集系数(BCF)表明,土壤理化组成、重金属种类和叶龄能够影响茶叶对重金属的吸收程度。风险评价结果显示,所有样品的目标危害系数(HQ)和危害指数(HI)均低于1,表明饮茶所致重金属健康风险处于可接受水平。本研究可为茶园重金属防控提供科学依据,对茶园管理和确保茶叶消费者健康具有积极指导意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
弓秋丽
杨剑洲
王振亮
严慧
关键词 土壤茶叶重金属植物器官健康风险评价    
Abstract

This study sampled the soil and the corresponding roots, stems, and leaves (including large leaves, new leaves, and sprouts) of tea plants from three ecological tea plantations in Qiongzhong County, Hainan Province. Based on these samples, this study investigated the migration of heavy metals in the soil-tea plant system and analyzed the migration patterns of heavy metals and the health risks caused by heavy metals in tea. As indicated by the results, the Pb, Cr, Cd, As, and Hg concentrations in the soil are slightly higher than the background values of corresponding soil elements in Hainan, showing non-significant accumulation. The enrichment of heavy metals varies significantly in different organs of tea plants. Specifically, Cr, Zn, Pb, Hg, and Cd are enriched in roots, while Cu and Ni are enriched in leaves; Pb, Cd, and Hg have higher concentrations in large leaves than in new leaves and sprouts, indicating that these elements are enriched with the growth of leaves; Cu, Ni, and Zn have higher concentrations in sprouts than in leaves, showing that these elements are enriched in the growing parts of leaves. Bio-concentration factors (BCF) indicate that soil physicochemical composition, heavy metal species, and leaf age have effects on the absorption of heavy metals by tea leaves. The results of the risk assessment show that the target hazard quotients (HQ) and hazard indices (HI) of all samples are less than 1, indicating acceptable health risks caused by heavy metals in tea. This study can provide a scientific basis for the prevention and control of heavy metals in tea plantations and has a positive guiding significance for managing tea plantations and ensuring the health of tea consumers.

Key wordssoil    tea    heavy metal    plant organ    health risk assessment
收稿日期: 2022-06-20      修回日期: 2022-11-26      出版日期: 2023-06-20
ZTFLH:  P632  
基金资助:中国地质调查局地质调查项目(DD20190305);中央及科研院所基本科研业务费(AS2022P02)
作者简介: 弓秋丽(1983-),女,硕士,高级工程师,2009年毕业于中国地质科学院,主要从事勘查地球化学研究工作。Email:gqiuli@mail.cgs.gov.cn
引用本文:   
弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
GONG Qiu-Li, YANG Jian-Zhou, WANG Zhen-Liang, YAN Hui. Migration of heavy metals in the soil-tea plant system and health risks of drinking tea: A case study of Qiongzhong County, Hainan Province. Geophysical and Geochemical Exploration, 2023, 47(3): 826-834.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1321      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I3/826
Fig.1  研究区土壤及对应植物采样位置示意
样品类型 分析项目 分析方法 检出限 单位
土壤 Cd 等离子体质谱法 30 10-9
Pb 等离子体质谱法 2 10-6
As 原子荧光光谱法 1 10-6
Hg 原子荧光光谱法 0.5 10-9
Cr 等离子体光学发射光谱法 5 10-6
Corg 高频燃烧—红外碳硫仪 0.1 %
pH 电位法 0.1
植物 Cd 等离子体质谱法 3 10-9
Cu 等离子体质谱法 0.05 10-6
Pb 等离子体质谱法 0.02 10-6
Ni 等离子体质谱法 0.05 10-6
As 等离子体质谱法 10 10-6
Hg 等离子体质谱法 1 10-9
Zn 等离子体质谱法 0.5 10-6
Cr 等离子体质谱法 0.05 10-6
Table 1  分析方法及检出限
参数 w(Pb)/10-6 w(Cr)/10-6 w(Cd)/10-6 w(As)/10-6 w(Hg)/10-6 w(Corg)/% pH
最小值 19.5 6.18 0.028 0.839 0.026 0.826 4.2
最大值 41.3 130.90 0.083 5.11 0.131 2.35 5.04
平均值 30.5 36.50 0.043 1.99 0.041 1.27 4.65
中位值 30.6 23.70 0.040 1.75 0.034 1.19 4.65
变异系数/% 18.7 100.5 34.1 48.8 58.0 28.0 4.2
海南土壤背景[14] 24.4 27.5 0.04 1.34 0.02
农用地土壤环
境筛选值[15]
70 150 0.3 40 1.3
Table 2  研究区土壤重金属基本统计参数
Fig.2  研究区茶树不同器官中重金属含量
项目 新叶 嫩芽 安全限量/
10-6
依据标准
含量范围
/10-6
平均值
/10-6
含量范围
/10-6
平均值
/10-6
Cr 0.22~1.88 0.77 0.16~1.64 0.59 5.0 中华人民共和国农业行业标准《茶叶中铬、镉、汞、砷及氟化物限量》(NY659—2003)
As 0.02~0.19 0.06 0.03~0.14 0.05 2.0 中华人民共和国农业行业标准《茶叶中铬、镉、汞、砷及氟化物限量》(NY659—2003)
Cd 0.02~0.04 0.03 0.01~0.04 0.02 1.0 中华人民共和国农业行业标准《茶叶中铬、镉、汞、砷及氟化物限量》(NY659—2003)
Hg 0.0018~0.003 0.0025 0.0018~0.0035 0.0024 0.3 中华人民共和国农业行业标准《茶叶中铬、镉、汞、砷及氟化物限量》(NY659—2003)
Pb 0.02~0.41 0.12 0.01~0.26 0.08 5.0 中华人民共和国国家标准《食品安全国家标准食品中污染物限量》(GB 2762—2017 )、中华人民共和国农业行业标准《无公害食品茶叶》(NY5244—2004)
Cu 15.20~22.30 18.90 16.10~24.20 20.23 30.0 中华人民共和国农业行业标准《绿色食品茶叶》(NY/T 288—2018)
Table 3  茶树新叶与嫩芽重金属含量分布
植物器
官类型
BCF (Pb) BCF (Cr) BCF (Cd) BCF (As) BCF (Hg)
范围 平均值 变异
系数
范围 平均值 变异
系数
范围 平均值 变异
系数
范围 平均值 变异
系数
范围 平均值 变异
系数
8.91~64.5 33.4 42.6 6.76~79.9 28.4 80.5 224~2051 660 63.1 6.11~138 46.0 68.4
1.64~23.4 10.1 64.7 0.87~35.7 9.38 106 211~593 346 31 0.00~5.02 0.82 197 3.82~21.04 13.2 31.3
老叶 1.42~4.85 3.03 46.8 4.47~16.9 12.6 38.1 43.4~85.7 57.6 31.5 0.00~0.57 0.11 224 14.9~19.7 16.6 11.9
新叶 0.05~1.49 0.41 108 0.37~11.2 2.70 99.0 25.7~135 75.2 43.2 0.45~9.64 3.40 62.0 2.29~9.10 6.69 27.0
嫩芽 0.03~0.93 0.26 103 0.43~5.12 1.89 70.7 27.0~108 55.2 44.5 0.74~8.94 3.25 60.9 1.91~10.4 6.62 34.5
Table 4  茶树不同植物器官5种重金属的生物富集因子
Fig.3  茶叶的新叶和嫩芽中重金属含量与土壤重金属、pH、Corg的相关关系
注:“*”表示 P<0.05,“**”表示 P<0.01
茶叶类型 参数 Cu Pb Zn Cr Ni Cd As Hg
嫩芽 最小值 8.78×10-4 6.29×10-7 1.25×10-3 3.48×10-6 3.64×10-4 2.16×10-7 1.54×10-6 1.55×10-7
最大值 1.32×10-3 1.64×10-5 1.96×10-3 3.57×10-5 1.26×10-3 1.19×10-6 6.34×10-6 3.01×10-7
平均值 1.10×10-3 5.00×10-6 1.61×10-3 1.28×10-5 5.85×10-4 5.89×10-7 2.45×10-6 2.06×10-7
新叶 最小值 8.29×10-4 1.19×10-6 1.15×10-3 4.79×10-6 3.01×10-4 4.31×10-7 1.04×10-6 1.55×10-7
最大值 1.22×10-3 2.58×10-5 1.75×10-3 4.09×10-5 1.28×10-3 1.13×10-6 8.60×10-6 2.58×10-7
平均值 1.03×10-3 7.76×10-6 1.37×10-3 1.68×10-5 5.55×10-4 7.56×10-7 2.66×10-6 2.13×10-7
Table 5  琼中县茶园茶树新叶与嫩芽重金属日摄入量(EDI)计算结果统计
Fig.4  研究区饮茶所致目标危害系数(HQ)及其占比
[1] De Oliveira L M, Das S, Da Silva E B, et al. Metal concentrations in traditional and herbal teas and their potential risks to human health[J]. Science of the Total Environment, 2018, 633:649-657.
doi: 10.1016/j.scitotenv.2018.03.215
[2] Zhang J, Yang R, Li Y, et al. Distribution,accumulation,and potential risks of heavy metals in soil and tea leaves from geologically different plantations[J]. Ecotoxicology and Environmental Safety, 2020, 195:110475.
doi: 10.1016/j.ecoenv.2020.110475
[3] Zhang J, Yang R, Chen R, et al. Multi-elemental analysis associated with chemometric techniques for geographical origin discrimination of tea leaves (Camelia sinensis) in Guizhou Province,SW China[J]. Molecules, 2018, 23(11):3013.
doi: 10.3390/molecules23113013
[4] 樊伟伟, 何进武, 陈冬梅, 等. 海南茶产业发展现状及发展策略研究[J]. 农产品加工, 2021(12):95-98.
[4] Fan W W, He J W, Chen D M, et al. Current situation and development strategy of tea industry in Hainan[J]. Farm Products Processing, 2021(12):95-98.
[5] 周国华, 曾道明, 贺灵, 等. 福建铁观音茶园生态地球化学特征[J]. 中国地质, 2015, 42(6):2008-2018.
[5] Zhou G H, Zeng D M, He L, et al. Eco-geochemical characteristics of the Tieguanyin tea gardens in Fujian Province[J]. Geology in China, 2015, 42(6):2008-2018.
[6] 孙境蔚, 胡恭任, 于瑞莲, 等. 铁观音茶园土壤—茶树体系中重金属的生物有效性. 环境化学, 2020, 39(10):2765-2776.
[6] Sun J W, Hu G R, Yu R L, et al. Bioavailability of heavy metals in soil-tea plant system of Tieguanyin tea garden[J]. Environmental Chemistry, 2020, 39(10): 2765-2776.
[7] 王峰, 单睿阳, 陈玉真, 等. 闽中某矿区县茶园土壤和茶叶重金属含量及健康风险[J]. 中国环境科学, 2018, 38(3):1064-1072.
[7] Wang F, Shang R Y, Chen Y Z, et al. Concentrations and health risk assessment of heavy metals in tea garden soil and tea-leaf from a mine county in central Fujian province[J]. China Environmental Science, 2018, 38(3):1064-1072.
[8] 杜蕾, 郎红, 邵辉, 等. 茶叶中重金属含量影响因素的研究进展[J]. 安徽农学通报, 2018, 24(24):40-42.
[8] Du L, Lang H, Shao H, et al. Progress in the impact factors of heavy metal in tea[J]. Anhui Agricultural Science Bulletin, 2018, 24(24):40-42.
[9] 张清海, 龙章波, 林绍霞, 等. 贵州云雾茶园土壤高含量重金属和砷在茶叶中的积累与浸出特征[J]. 食品科学, 2013, 34(8):212-215.
doi: 10.7506/spkx1002-6630-201308045
[9] Zhang Q H, Long Z B, Lin S X, et al. Distribution of heavy metals in soil and tea from yunwu tea area in guizhou province and diffusion characteristics of heavy metals in tea infusion[J]. Food Science, 2013, 34(8):212-215.
doi: 10.1111/jfds.1969.34.issue-2
[10] 张勤, 白金峰, 王烨. 地壳全元素配套分析方案及分析质量监控系统[J]. 地学前缘, 2012, 19(3):33-42.
[10] Zhang Q, Bai J F, Wang Y. Analytical scheme and quality monitoring system for China geochemical baselines[J]. Earth Science Frontiers, 2012, 19(3):33-42.
[11] Wei J, Cen K. Assessment of human health risk based on characteristics of potential toxic elements (PTEs) contents in foods sold in Beijing,China[J]. Science of the Total Environment, 2020, 703:134747.
doi: 10.1016/j.scitotenv.2019.134747
[12] Zhang J, Yang R, Chen R, et al. Accumulation of heavy metals in tea leaves and potential health risk assessment: A case study from Puan County,Guizhou Province,China[J]. International Journal of Environmental Research and Public Health, 2018, 15(1):133.
doi: 10.3390/ijerph15010133
[13] 杨剑洲, 王振亮, 高健翁, 等. 海南省集约化种植园中谷物,蔬菜和水果中重金属累积程度及健康风险[J]. 环境科学, 2021, 42(10): 4916-4924.
[13] Yang J Z, Wang Z L, Gao J W, et al. Accumulation and health risk of heavy metals in cereals,vegetables,and fruits of intensive plantations in Hainan Province[J]. Environmental Science, 2021, 42(10): 4916-4924.
[14] 傅杨荣, 杨奕, 何玉生, 等. 中华人民共和国多目标区域地球化学调查报告:海南岛[R]. 海南地质调查研究院, 2008.
[14] Fu Y R, Yang Y, He Y S, et al. Multi-purpose regional geochemical report of Hainan Island[R]. Hainan Institute of Geological Survey, 2008.
[15] 生态环境部. GB 15618—2018土壤环境质量农用地土壤污染风险管控标准(试行)[S].
[15] Ministry of Ecology and Environment of PRC. GB 15618—2018 Soil environmental quality-risk control standard for soil contamination of agricultural land[S].
[16] Yang X, Ni K, Shi Y, et al. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China[J]. Agriculture,Ecosystems and Environment, 2018, 252:74-82.
doi: 10.1016/j.agee.2017.10.004
[17] Yemane M, Chandravanshi B S, Wondimuc T. Levels of essential and non-essential metals in leaves of the tea plant (Camellia sinensis L.) and soil of Wushwush farms,Ethiopia[J]. Food Chemistry, 2008, 107(3):1236-1243.
[18] Yan P, Shen C, Fan L, et al. Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil[J]. Agriculture,Ecosystems and Environment, 2018, 254:20-25.
doi: 10.1016/j.agee.2017.11.015
[19] Liao J, Wen Z, Ru X, et al. Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: Public health implications in Guangdong Province,China[J]. Ecotoxicology and Environmental Safety, 2016, 124:460-469.
doi: 10.1016/j.ecoenv.2015.11.023
[20] 黄玉源, 黄益宗, 李秋霞, 等. 广州市污水灌溉对菜地土壤和蔬菜的影响[J]. 环境化学, 2005(6):102-103.
[20] Huang Y Y, Huang Y Z, Li Q X, et al. Effects of sewage irrigation on vegetable soil and vegetables in Guangzhou[J]. Environmental Chemistry, 2005, 24(6):102-103.
[21] NY659—2003茶叶中铬、镉、汞、砷及氟化物限量[S]. 北京: 中国标准出版社, 2003.
[21] NY659—2003 Limit of chromium, cadmium, mercury, arsenic and fluoride in tea[S]. Beijing: China Standards Press, 2003.
[22] GB 2762—2017食品安全国家标准食品中污染物限量[S]. 北京: 中国标准出版社, 2017.
[22] GB 2762—2017 National food safety standard:Limit of contaminants in food[S]. Beijing: China Standards Press, 2017.
[23] Gan Y, Wang L, Yang G, et al. Multiple factors impact the contents of heavy metals in vegetables in high natural background area of China[J]. Chemosphere, 2017, 184:1388-1395.
doi: S0045-6535(17)30975-X pmid: 28693113
[24] Cui J, Wang W, Peng Y, et al. Effects of simulated Cd deposition on soil Cd availability,microbial response,and crop Cd uptake in the passivation-remediation process of Cd-contaminated purple soil[J]. Science of the Total Environment, 2019, 683:782-792.
doi: 10.1016/j.scitotenv.2019.05.292
[25] Shen X, Huang D, Ren X, et al. Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil[J]. Journal of Environmental Management, 2016, 168:245-251.
doi: 10.1016/j.jenvman.2015.12.019 pmid: 26720720
[26] Liu B, Ai S, Zhang W, et al. Assessment of the bioavailability,bioaccessibility and transfer of heavy metals in the soil-grain-human systems near a mining and smelting area in NW China[J]. Science of the Total Environment, 2017, 609:822-829.
doi: 10.1016/j.scitotenv.2017.07.215
[27] 张富贵, 彭敏, 王惠艳, 等. 基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价[J]. 环境科学, 2020, 41(9):4197-4209.
[27] Zhang F G, Peng M, Wang H Y, et al. Ecological risk assessment of heavy metals at township scale in the high background of heavy metals,Southwestern,China[J]. Environmental Science, 2020, 41(9): 4197-4209.
[28] 崔邢涛, 王学求, 栾文楼. 河北中南部平原土壤重金属元素存在形态及生物有效性分析[J]. 中国地质, 2015, 42(2):655-663.
[28] Cui X T, Wang X Q, Luan W L. An analysis of modes of occurrence and biological availability of the heavy metal elements in soil of the central and southern plain in Hebei[J]. Geology in China, 2015, 42(2): 655-663.
[29] 唐豆豆, 袁旭音, 汪宜敏, 等. 地质高背景农田土壤中水稻对重金属的富集特征及风险预测[J]. 农业环境科学学报, 2018, 37(1):18-26.
[29] Tang D D, Yuan X Y, Wang Y M, et al. Enrichment characteristics and risk prediction of heavy metals for rice grains growing in paddy soils with a high geological background[J]. Journal of Agro-Environment Science, 2018, 37(1):18-26.
[30] Ma H, Cheng H, Guo F, et al. Distribution of mercury in foliage,litter and soil profiles in forests of the Qinling Mountains,China[J]. Environmental Research, 2022, 211:113017.
doi: 10.1016/j.envres.2022.113017
[31] 李丽光, 何兴元, 曹志强, 等. 土壤—作物系统中铅的研究进展[J]. 生态学杂志, 2004, 23(1): 78-82.
[31] Li L G, He X Y, Cao Z Q, et al. Advances in studies on lead in soil-crop system[J]. Chinese Journal of Ecology, 2004, 23(1): 78-82.
[32] 施亚星, 吴绍华, 周生路, 等. 土壤—作物系统中重金属元素吸收、迁移和积累过程模拟[J]. 环境科学, 2016, 37(10):3996-4003.
[32] Shi Y X, Wu S H, Zhou S L, et al. Simulation of the absorption,migration and accumulation process of heavy metal elements in soil-crop system[J]. Environmental Science, 2016, 37(10): 3996-4003.
[33] Karak T, Abollino O, Bhattacharyya P, et al. Fractionation and speciation of arsenic in three tea gardens soil profiles and distribution of As in different parts of tea plant (Camellia sinensis L.)[J]. Chemosphere, 2011, 85(6):948-960.
doi: 10.1016/j.chemosphere.2011.06.061 pmid: 21752421
[34] 杨钦沾, 陈孟君, 温恒, 等. 茶叶中10种重金属浸出率[J]. 福建农业学报, 2015, 30(4):406-410.
[34] Yang Q Z, Chen M J, Wen H, et al. Leaching rates of ten heavy metals in tea[J]. Fujian Journal of Agricultural Sciences, 2015, 30(4):406-410.
[35] Sun J, Hu G, Liu K, et al. Potential exposure to metals and health risks of metal intake from Tieguanyin tea production in Anxi,China[J]. Environmental Geochemistry and Health, 2019, 41(3):1291-1302.
doi: 10.1007/s10653-018-0212-y
[36] 赵佐平, 付静, 岳思羽, 等. 陕南茶园茶叶品质分析及重金属含量现状评估[J]. 农业工程学报, 2020, 36(16):201-211.
[36] Zhao Z P, Fu J, Yue S Y, et al. Analysis of tea quality and assessment of heavy metal content status in tea plantations of southern Shaanxi Province,China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 201-211.
[37] Zheng S, Wang Q, Yuan Y, et al. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China[J]. Food Chemistry, 2020, 316:126213.
doi: 10.1016/j.foodchem.2020.126213
[1] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[2] 范海印, 宋蕊蕊, 于林松, 滕永波, 万方, 张秀文, 李圣玉, 赵闯. 鲁西北地区某典型化工园区地下水重金属污染特征及健康风险评价[J]. 物探与化探, 2023, 47(5): 1326-1335.
[3] 阙泽胜, 李冠超, 胡颖, 简锐敏, 刘兵. 基于GIS的土壤环境放射性水平和风险评价[J]. 物探与化探, 2023, 47(5): 1336-1347.
[4] 姜冰, 刘阳, 吴振, 张德明, 孙增兵, 马健. 高密地区灌溉水及土壤氟地球化学特征[J]. 物探与化探, 2023, 47(5): 1348-1353.
[5] 任蕊, 张志敏, 王晖, 陈继平, 乔新星, 梁东丽. 陕西关中土壤富硒标准研究与探讨——以小麦为例[J]. 物探与化探, 2023, 47(5): 1354-1360.
[6] 杨婵, 吴娟娟, 车旭曦, 岳思羽, 刘智峰, 宋凤敏. 汉江上游水体沉积物污染状况分析与评价[J]. 物探与化探, 2023, 47(5): 1361-1370.
[7] 田强国, 侯进凯, 杨在伟, 李立园. 河南省洛阳市土壤硒全量、有效性及形态分布特征[J]. 物探与化探, 2023, 47(5): 1371-1378.
[8] 袁玉婷, 刘雪敏, 王学求, 谭亲平. 硫、铅同位素对地表土壤微细粒金属全量测量异常的示踪——以水银洞卡林型隐伏金矿体为例[J]. 物探与化探, 2023, 47(4): 1083-1097.
[9] 刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108.
[10] 王惠艳, 彭敏, 马宏宏, 张富贵. 贵州典型重金属高背景区耕地土壤重金属生态风险评价[J]. 物探与化探, 2023, 47(4): 1109-1117.
[11] 多吉卫色, 次仁旺堆, 尼玛洛卓, 周鹏, 尼玛次仁. 西藏白朗县农田系统硒含量特征及影响因素[J]. 物探与化探, 2023, 47(4): 1118-1126.
[12] 包凤琴, 成杭新, 永胜, 周立军, 杨宇亮. 包头南郊农田土壤环境质量特征及农作物健康风险评价[J]. 物探与化探, 2023, 47(3): 816-825.
[13] 赵玉岩, 姜涛, 杨秉翰, 张泽宇, 李政赫, 李兵, 汤肖丹. 农田土壤—植物系统中钒的迁移富集规律[J]. 物探与化探, 2023, 47(3): 835-844.
[14] 胡梦颖, 张鹏鹏, 徐进力, 刘彬, 张灵火, 杜雪苗, 白金峰. CEC前处理系统—凯氏定氮仪快速测定土壤中的阳离子交换量[J]. 物探与化探, 2023, 47(2): 458-463.
[15] 张亚峰, 姬丙艳, 沈骁, 姚振, 马强, 王帅, 贺连珍, 韩伟明. 西宁盆地咸水湖相沉积型富硒土壤的形成机理及意义[J]. 物探与化探, 2023, 47(2): 470-476.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com