Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (4): 961-967    DOI: 10.11720/wtyht.2022.1363
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于瞬时相位余弦的探地雷达多层路面自动检测
周东1,2(), 刘毛毛1, 刘宗辉1,2(), 刘保东3
1.广西大学 土木建筑工程学院,广西 南宁 530004
2.广西大学 广西防灾减灾与工程安全重点实验室,广西 南宁 530004
3.南宁城建管廊建设投资有限公司,广西 南宁 530219
Automatic detection of multiple pavement layers based on the cosine of instantaneous phase of ground penetrating radar data
ZHOU Dong1,2(), LIU Mao-Mao1, LIU Zong-Hui1,2(), LIU Bao-Dong3
1. School of Civil Engineering and Architecture,Guangxi University,Nanning 530004,China
2. Guangxi Key Laboratory of Disaster Prevention and Engineering Safety,Guangxi University,Nanning 530004,China
3. Nanning Pipe Gallery Construction Investment Co.,Ltd.,Nanning 530219,China
全文: PDF(4200 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

层位特征是探地雷达路面检测的重要信息,而目前基于人工或相关算法的层位拾取方法存在主观性强、工作量大和每次仅能追踪一个层位等问题。为此,提出了一种基于探地雷达瞬时相位余弦的多层位自动追踪方法。首先,通过复信号分析获取了雷达数据的瞬时相位余弦;其次,利用子波余弦矩阵数据进行相似度分析后再计算其瞬时相位余弦,增强相位数据同相轴的横向连续性;然后,获取相位数据的空间位置、振幅和极性信息,并在信号幅值和同相轴特征等一系列约束条件下自动追踪横向连续的层位线;最后,通过比较深度方向相邻层位线上振幅的均方根平方值来确定层位数据及其极性,并通过设置层位线阈值和振幅阈值来提取强振幅连续的层位线数据。数值模拟和现场案例分析验证了本文方法的有效性和适应性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周东
刘毛毛
刘宗辉
刘保东
关键词 探地雷达复信号分析公路路面层位自动追踪    
Abstract

Horizon characteristics are important information in pavement detection using ground penetrating radar (GPR) data.However,current horizon picking methods based on manual work or related algorithms have problems such as strong subjectivity and heavy workload and they can only track one horizon each time.Therefore,this study proposed a multi-layer auto-tracking method based on the cosine of the instantaneous phase of GPR data.The specific steps of this method are as follows.Firstly,obtain the cosine of the instantaneous phase of GPR data through complex signal analysis.Secondly,carry out the correlation analysis of wavelet cosine matrix data and then calculate the cosine of the instantaneous phase of these data,aiming to enhance the transverse continuity of phase data along the cophase axis.Thirdly,obtain the spatial positions,amplitude,and polarity of the phase data,and automatically track the transversely continuous horizon lines under a series of constraints such as signal amplitude and cophase axis characteristics.Finally,determine the horizon data and their polarity by comparing the RMS values of the amplitude of adjacent horizon lines along the depth direction,and extract the horizon line data with continuous high amplitude by setting horizon and amplitude thresholds.Numerical simulation and field case analysis have verified the effectiveness and adaptability of the method proposed in this study.

Key wordsground penetrating radar    complex signal analysis    highway pavement    horizon automatic
收稿日期: 2021-07-20      修回日期: 2022-03-24      出版日期: 2022-08-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目(51708136);广西科技基地和人才专项(桂科AD19245153)
通讯作者: 刘宗辉
作者简介: 周东(1962-),男,教授,博士生导师,主要从事工程地球物理的理论与应用研究工作。Email: zhd@gxu.edu.cn
引用本文:   
周东, 刘毛毛, 刘宗辉, 刘保东. 基于瞬时相位余弦的探地雷达多层路面自动检测[J]. 物探与化探, 2022, 46(4): 961-967.
ZHOU Dong, LIU Mao-Mao, LIU Zong-Hui, LIU Bao-Dong. Automatic detection of multiple pavement layers based on the cosine of instantaneous phase of ground penetrating radar data. Geophysical and Geochemical Exploration, 2022, 46(4): 961-967.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1363      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I4/961
Fig.1  雷达子波及其瞬时相位余弦
Fig.2  数值模拟几何模型
Fig.3  数值模拟结果对比
a—纯净无噪声数据;b—添加高斯噪声
Fig.4  瞬时相位余弦剖面
a—横向增强处理前;b—横向增强处理后
Fig.5  层位追踪结果
Fig.6  原始雷达剖面和测线第15 m处单道波形
Fig.7  横向增强处理前(a)后(b)层位追踪结果对比
Fig.8  两种方法层位追踪结果对比
[1] Torbaghan M E, Li W, Metje N, et al. Automated detection of cracks in roads using ground penetrating radar[J]. Journal of Applied Geophysics, 2020, 179:1-12.
[2] Xu X J, Lei Y, Yang F. Railway subgrade defect automatic recognition method based on improved faster R-CNN[J]. Scientific Programming, 2018(6):1-12.
[3] 韩佳明, 仲鑫, 景帅, 等. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6):1476-1481.
[3] Han J M, Zhong X, Jing S, et al. The application of geological radar to urban geological pipeline detection in the loess area[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1476-1481.
[4] 许泽善, 周江涛, 刘四新, 等. 三维步进频率探地雷达在沥青层厚度检测中的应用[J]. 物探与化探, 2019, 43(5):1145-1150.
[4] Xu Z S, Zhou J T, Liu S X, et al. The realization of applying 3D frequency stepped ground penetrating to the detection of asphalt layer thickness[J]. Geophysical and Geochemical Exploration, 2019, 43(5):1145-1150.
[5] 郑公营, 曾婷婷. 地震层位自动追踪技术研究[J]. 物探化探计算技术, 2013, 35(6):711-716.
[5] Zheng G Y, Zeng T T. The technology of seismic horizon automatic tracking[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2013, 35(6):711-716.
[6] 张泉, 朱连章, 郭加树, 等. 地震DNA算法的改进及其在地震层位拾取中的应用[J]. 石油物探, 2017, 56(3):400-407.
[6] Zhang Q, Zhu L Z, Guo J S, et al. The improvement of seismic DNA algorithm and its application in automatic horizon pickup[J]. Geophysical Prospecting for Petroleum, 2017, 56(3):400-407.
[7] 刘鑫, 车翔玖, 林森乔. 基于倾角校正的地震层位追踪算法[J]. 图学学报, 2015, 36(3):418-424.
[7] Liu X, Che Y J, Lin S Q. Seismic horizon extraction based on dip correction[J]. Journal of Graphics, 2015, 36(3):418-424.
[8] 蒋旭东, 曹俊兴, 胡江涛. 基于结构导向的层位自动追踪[J]. 石油物探, 2018, 57(5):726-732.
[8] Jiang X D, Cao J X, Hu J T. Structure-oriented automatic horizons tracking[J]. Geophysical Prospecting for Petroleum, 2018, 57(5):726-732.
[9] Le Bastard C, Baltazart V, Wang Y, et al. Thin-pavement thickness estimation using GPR with high-resolution and superresolution methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8):2511-2519.
doi: 10.1109/TGRS.2007.900982
[10] Wu X M, Hale D. Horizon volumes with interpreted constraints[J]. Geophysics, 2014, 80(2):M21-M33.
[11] Zabihi Naeini E, Hale D. Image- and horizon-guided interpolation[J]. Geophysics, 2015, 80(3):V47-V56.
doi: 10.1190/geo2014-0279.1
[12] 刘旭跃, 周巍, 张兵, 等. 一种基于图像学的地震层位自动追踪方法[J]. 物探化探计算技术, 2017, 39(1):64-70.
[12] Liu X Y, Zhou W, Zhang B, et al. An automatic tracking method for seismic horizons based on image theory[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2017, 39(1):64-70.
[13] Lahouar S, Al-Qadi I L. Automatic detection of multiple pavement layers from GPR data[J]. Ndt and E International, 2008, 41(2):69-81.
doi: 10.1016/j.ndteint.2007.09.001
[14] Loizos A, Plati C. Accuracy of pavement thicknesses estimation using different ground penetrating radar analysis approaches[J]. Ndt and E International, 2007, 40(2):147-157.
doi: 10.1016/j.ndteint.2006.09.001
[15] 周辉林, 姜玉玲, 徐立红, 等. 基于SVM的高速公路路基病害自动检测算法[J]. 中国公路学报, 2013, 26(2):42-47.
[15] Zhou H L, Jiang Y L, Xu L H, et al. Automatic detection algorithm for expressway subgrade diseases based on SVM[J]. China Journal of Highway and Transport, 2013, 26(2):42-47.
[16] Le Bastard C, Wang Y, Baltazart V, et al. Time delay and permittivity estimation by ground-penetrating radar with support vector regression[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4):873-877.
doi: 10.1109/LGRS.2013.2280500
[17] Zhao S, Shangguan P, Al-Qadi I L. Application of regularized deconvolution technique for predicting pavement thin layer thicknesses from ground penetrating radar data[J]. Ndt and E International, 2015, 73:1-7.
doi: 10.1016/j.ndteint.2015.03.001
[18] Craig W, Antonios G, Iraklis G. gprMax:Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar[J]. Computer Physics Communications, 2016, 209:163-170.
[1] 席宇何, 王洪华, 王欲成, 吴祺铭. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5): 1250-1260.
[2] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[3] 曾波, 刘硕, 杨军, 冯德山, 袁忠明, 柳杰, 王珣. 地表起伏对地下管线GPR探测的影响[J]. 物探与化探, 2023, 47(4): 1064-1070.
[4] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[5] 徐立, 冯温雅, 姜彦南, 王娇, 朱四新, 覃紫馨, 李沁璘, 张世田. 基于行列方差方法的探地雷达道路数据感兴趣区域自动提取技术[J]. 物探与化探, 2023, 47(3): 804-809.
[6] 冯温雅, 程丹丹, 王成浩, 程星. 基于探地雷达等效采样的时变零偏实时校正方法[J]. 物探与化探, 2023, 47(2): 372-376.
[7] 张斯薇, 吴荣新, 韩子傲, 吴海波. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2): 496-501.
[8] 蔡连初, 缪念有. 探地雷达宽角反射图形拟合方法[J]. 物探与化探, 2021, 45(1): 239-244.
[9] 韩佳明, 仲鑫, 景帅, 刘平. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6): 1476-1481.
[10] 李靖翔, 赵明, 赖皓, 熊双成, 唐阳. 地下电缆的探地雷达图像特征与识别技术[J]. 物探与化探, 2020, 44(6): 1482-1489.
[11] 高阳, 彭明涛, 杨培胜, 王恒, 王平, 李海. 三峡库区巫峡段高陡峡谷区危岩裂隙带探地雷达探测[J]. 物探与化探, 2020, 44(2): 441-448.
[12] 王飞详, 梁风, 左双英. 基于探地雷达岩体浅部节理面识别的模型实验[J]. 物探与化探, 2020, 44(1): 185-190.
[13] 许泽善, 周江涛, 刘四新, 曾贤德. 三维步进频率探地雷达在沥青层厚度检测中的应用[J]. 物探与化探, 2019, 43(5): 1145-1150.
[14] 龚俊波, 王洪华, 王敏玲, 罗泽明. 逆时偏移在探地雷达数据处理中的应用[J]. 物探与化探, 2019, 43(4): 835-842.
[15] 王成浩, 程丹丹. 基于马氏距离模板特征的地雷目标识别研究[J]. 物探与化探, 2019, 43(4): 899-903.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com