Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (2): 502-510    DOI: 10.11720/wtyht.2022.2554
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
黔南荔波县水稻—根系土系统中硒含量影响因素分析
周文龙(), 杨志忠(), 张涛, 忙是材, 杨正坤
贵州省有色金属和核工业地质勘查局 地质矿产勘查院,贵州 贵阳 550005
An analysis of factors influencing the selenium content in the rice-root soil system in Libo County, southern Guizhou Province
ZHOU Wen-Long(), YANG Zhi-Zhong(), ZHANG Tao, MANG Shi-Cai, YANG Zheng-Kun
Institute of Geology and Mineral Resources Exploration, Non-Ferrous Metals and Nuclear Industry Geological Exploration Bureau of Guizhou, Guiyang 550005, China
全文: PDF(1883 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

硒是人体必需的微量元素之一,其对重金属元素毒性具有拮抗作用,通过食物链转化方式获得硒是人体最主要和最安全可行的途径。以荔波县大面积分布的天然优质富硒耕地为研究对象,采集分析了30组水稻籽实和配套根系土样品,据此评价稻米食用安全性,研究水稻—根系土系统硒含量关系,探究土壤理化条件对水稻硒吸收运移的影响,以期为研究区富硒农业发展提供科学依据。结果显示:研究区水稻根系土硒(SeS)含量大部分达富硒水平,平均值为0.41×10-6,稻米硒(SeR)平均值0.030 7×10-6,绿色安全稻米占70%;水稻根系土中SeS和Fe2O3、Al2O3、MgO、有机质呈现显著正相关关系,且与Cr、Cd等重金属元素呈伴生关系;水稻籽实SeR与根系土SeS呈显著正相关关系,而水稻籽实硒富集系数与根系土SeS、As、Cd、Cr、Hg、Ni、Al2O3、Fe2O3、有机质等呈显著负相关关系,说明土壤有机质及铁铝氧化物对硒的吸附和固定作用降低了水稻对硒的吸收利用率,硒与重金属元素在土壤—稻米系统中的吸收运移可能具有一定拮抗作用。研究区富硒耕地资源丰富,但稻米存在Cr、Cd轻度超标的风险,发展富硒农业时应关注重金属元素生态效应。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周文龙
杨志忠
张涛
忙是材
杨正坤
关键词 水稻根系土重金属富硒农业黔南荔波县    
Abstract

Selenium (Se), one of the trace elements essential to human body, plays an antagonistic role toward the toxicity of heavy metals. The most important, safe, and feasible way for human body to take Se is to transform Se via food chain. This study collected and analyzed 30 groups of samples of rice seeds and corresponding root soil from the natural high-quality Se-rich farmland that is widely distributed in Libo County. Based on this, this study evaluated the edible safety of rice, studied the selenium content in the rice-root soil system, and investigated the influence of the physical and chemical conditions of soil on rice's absorption and transport of selenium, aiming to provide a scientific basis for the development of Se-rich agriculture in the study area. The results are as follows. Most root soil of rice in the study area is Se-rich, with an average Se content of 0.41×10-6. The rice in the study area has an average w(Se) of 0.030 7×10-6, and green and safe rice accounted for 70%. For the root soil of rice in the study area, there is a significant positive correlation between w(Se) and w(Fe2O3), w(Al2O3), w(MgO), and w(organic matter), and there is associated relationship between w(Se) and some heavy metals including Cr and Cd. There was a significant positive correlation between Se content of rice seeds and that of root soil. By contrast, there is a significant negative correlation between the Se enrichment coefficient of rice and the contents of Se, As, Cd, Cr, Hg, Ni, Al2O3, Fe2O3, and organic matter in root soil. The results indicate that the absorption and fixation of Se by the organic matter and Fe-Al oxides in soil reduce rice's absorption and utilization rate of selenium. The negative correlation between Se enrichment coefficient of rice and the heavy metal contents of root soil suggests that Se may play a certain antagonistic role toward the absorption and transport of heavy metals in the soil-rice system. The study area is rich in Se-rich farmland resources, yet there is a risk that the contents of Cr and Cd in rice slightly exceeds relevant standards. Therefore, it is necessary to pay attention to the ecological effects of heavy metal elements in the development of Se-rich agriculture in the study area.

Key wordsselenium(Se)    rice    root soil    heavy metals    selenium-enriched agriculture    Libo County, southern Guizhou Province
收稿日期: 2020-12-02      修回日期: 2021-08-24      出版日期: 2022-04-20
ZTFLH:  P632  
基金资助:贵州省公益地勘基金项目(黔耕调2017-03);黔色耕调(2017-03-33);资助
通讯作者: 杨志忠
作者简介: 周文龙(1984-),男,高级工程师,硕士,主要从事矿产地质勘查、农业地质调查等技术研究工作。Email: E578064048@126.com
引用本文:   
周文龙, 杨志忠, 张涛, 忙是材, 杨正坤. 黔南荔波县水稻—根系土系统中硒含量影响因素分析[J]. 物探与化探, 2022, 46(2): 502-510.
ZHOU Wen-Long, YANG Zhi-Zhong, ZHANG Tao, MANG Shi-Cai, YANG Zheng-Kun. An analysis of factors influencing the selenium content in the rice-root soil system in Libo County, southern Guizhou Province. Geophysical and Geochemical Exploration, 2022, 46(2): 502-510.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.2554      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I2/502
Fig.1  研究区采样位置
指标 pH SeR SeS As Cd Cr Cu Hg Ni Pb
最大值 6.90 0.032 0.90 14.80 1.46 120.00 92.10 0.55 36.6. 55.50
最小值 4.58 0.0295 0.24 2.66 0.15 39.20 6.34 0.06 4.26 14.10
平均值 5.37 0.0307 0.41 6.58 0.50 74.90 20.90 0.14 19.39 24.05
变异系数/% 11.46 1.99 33.36 47.35 66.08 29.65 80.00 63.60 46.39 34.22
K 与全国对比 0.80 0.97 1.41 0.58 0.15 1.25 0.93 1.98 0.72 1.05
与贵州对比 0.85 0.49 1.24 0.76 0.61 1.07 0.49 0.72
指标 Zn Mn 有机质 Fe2O3 Al2O3 SiO2 CaO MgO Na2O K2O
最大值 131.00 321.00 7.72 5.85 14.83 83.23 1.21 1.51 0.47 2.25
最小值 18.10 38.30 2.41 1.28 5.29 61.79 0.12 0.25 0.16 0.32
平均值 67.61 128.78 4.52 3.25 9.43 74.54 0.45 0.63 0.26 1.06
变异系数/% 43.61 63.65 27.35 42.73 30.59 8.91 57.08 59.10 32.05 54.85
K 与全国对比 0.91 0.22 1.60 1.10 0.75 1.15 0.30 0.81 0.17 1.13
与贵州对比 0.65 0.18 1.47
Table 1  研究区水稻籽实SeR与根系土中SeS等指标统计(n=30)
Fig.2  水稻根系土硒含量直方分布
参数 AsR CdR CrR HgR PbR
最大值(CijMax) 0.332 0.780 1.700 0.125
最小值(CijMin) 0.152 0.016 0.450 0.036
平均值(CijAve) 0.225 0.093 0.923 0.067
食品安全标准限值(Lij) 0.5 0.2 1.0 0.02 0.2
超标数量 0 1 9 0 0
超标指数(Eij) 4.40 1.09~1.70
超标等级 重度超标 轻度超标
Table 2  水稻籽实中重金属元素含量特征及其超标情况(n=30)
指标 r 指标 r 指标 r
As 0.746** Pb 0.321 CaO 0.313
Cd 0.465** 有机质 0.373* MgO 0.474**
Cr 0.514** pH 0.167 K2O 0.462**
Cu 0.227 SiO2 -0.489** Na2O 0.107
Hg 0.577** Fe2O3 0.477**
Ni 0.526** Al2O3 0.424**
Table 3  水稻根系土硒与各理化指标相关系数(n=30)
指标 r 指标 r 指标 r
SeS 0.167* Ni -0.057 Al2O3 -0.374**
As 0.279 Pb -0.011 CaO -0.168
Cd 0.068 有机质 -0.503** MgO -0.261
Cr 0.099 pH -0.146 K2O -0.178
Cu -0.082 SiO2 0.334 Na2O 0.086
Hg -0.024 Fe2O3 -0.127
Table 4  水稻籽实硒与根系土理化指标相关系数(n=30)
Fig.3  水稻籽实硒富集系数KR与根系土Al2O3散点图(n=30)
Fig.4  水稻籽实硒富集系数KR与根系土Fe2O3散点图(n=30)
Fig.5  水稻籽实硒富集系数KR与根系土有机质散点图(n=30)
Fig.6  水稻籽实硒富集系数KR与根系土SeS散点图(n=30)
元素 r 元素 r 元素 r
As -0.699** Pb -0.216 CaO 0.320
Cd -0.412* SOM. -0.447* MgO -0.508**
Cr -0.546** pH -0.122 K2O -0.461*
Cu -0.241 SiO2 0.547** Na2O -0.154
Hg -0.526** Fe2O3 -0.541** SeR -0.903**
Ni -0.529** Al2O3 -0.479**
Table 5  水稻籽实硒富集系数(KR)与根系土理化指标相关系数(n=30)
[1] Patrick L. Selenium biochemistry and cancer: A review of the literature[J]. Alternative Medicine Review, 2004, 9(3): 239-258.
pmid: 15387717
[2] 葛晓立, 李家熙, 万国江, 等. 张家口克山病地区土壤硒的地球化学形态研究[J]. 岩矿测试, 2000, 19(4):254-258.
[2] Ge X L, Li J X, Wan G J, et al. Study on characteristics of selenium geochemical speciation in soil in Zhangjiakou Keshan disease area[J]. Rock and Mineral Analysis, 2000, 19(4): 254-258.
[3] Tan J A, Zhu W Y, Wang W Y, et al. Selenium in soil and endemic diseases in China[J]. The Science of the Total Environment, 2002, 284(1): 227-235.
doi: 10.1016/S0048-9697(01)00889-0
[4] Fordyce F M. Selenium deficiency and toxicity in the environment [G]// Aolle Selinus. Essentials of Medical Geology. Uppsala, Dordrecht: Springer, 2013: 375-416.
[5] 周墨, 陈国光, 张明, 等. 赣南地区土壤硒元素地球化学特征及其影响因素研究:以青塘—梅窑地区为例[J]. 现代地质, 2018(6):1292-1301.
[5] Zhou M, Chen G G, Zhang M, et al. Geochemical characteristics and influencing factors of selenium in soils of south Jiangxi Province: A typical area of Qingtang-Meiyao[J]. Geoscience, 2018, 32(6):1292-1301.
[6] 周文龙, 张涛, 吴昭阳, 等. 黔南荔波地区耕地土壤中硒的分布特征及影响因素分析[J]. 贵州地质, 2020, 37(3):313-319.
[6] Zhou W L, Zhang T, Wu Z Y, et al. Characteristics of soil selenium distribution of cultivated land and its influential factors in Libo of South Guizhou[J]. Guizhou Geology, 2020, 37(3):313-319.
[7] 蔡大为, 李龙波, 蒋国才, 等. 贵州耕地主要元素地球化学背景值统计与分析[J]. 贵州地质, 2020, 37(3):233-239.
[7] Cai W, Li L B, Jiang G C, et al. Statistics and analysis of geochemical background of main elements of cultivated land in Guizhou Province[J]. Guizhou Geology, 2020, 37(3):233-239.
[8] Matos R P, Lima V M P, Windmoller C C, et al. Correlation between the natural levels of selenium and soil physiochemical characteristics from Jequitinhonha Vally(MG), Brazil[J]. Journal of Geochemical Exploration, 2016, 172: 195-202.
doi: 10.1016/j.gexplo.2016.11.001
[9] Samazíková P, Praus L, Száková J, et al. The effect of organic matter rich amendments on selenium mobility in soil[J]. Pedosphere, 2017, 24(9): 1-11.
doi: 10.1016/S1002-0160(13)60076-4
[10] 付中彪, 何宁洁, 鲍征宇, 等. 赣南地区水稻—根系土系统中硒含量影响因素分析[J]. 地质科技情报, 2019, 38(5):220-229.
[10] Fu Z B, He N H, Bao Z Y, et al. Analysis of influencing factors of selenium content in rice-root soil system in Southern Jiangxi[J]. Geological Science and Technology Information, 2019, 38(5):220-229.
[11] 姜超强, 沈嘉, 祖朝龙. 水稻对天然富硒土壤硒的吸收及转运[J]. 应用生态学报, 2015, 26(3):809-816.
[11] Jiang C Q, Shen J, Zu C L, et al. Selenium uptake and transport of rice under different Se-enriched natural soil[J]. Chinese Jouranl of Applied Ecology, 2015, 26(3):809-816.
[12] 陈锦平, 刘永贤, 潘丽萍, 等. 浔郁平原不同作物的硒富集特征及其影响因素[J]. 土壤, 2018, 50(6):1155-1159.
[12] Chen J P, Liu Y X, Pan L P, et al. Selenium accumulation characteristics and its influencing factors of different crops in Xunyu Plain[J]. Soils, 2018, 50(6):1155-1159.
[13] 章倩. 海南西部土壤-水稻系统硒分布特征[D]. 海口: 海南大学, 2013.
[13] Zhang Q. Distribution of Se in Soil-rice systems in West Part of Hainan Island[D]. Haikou: Hainan Unversity, 2013.
[14] 中国环境监测总站. 中国土壤元素平均值[M]. 北京: 中国环境科学出版社, 1990.
[14] China Environmental Monitoring Station. Average value of soil elements in China[M]. Beijing: China Environmental Science Press, 1990.
[15] 张宝军, 杨林生, 王五一, 等. 大骨节病区土壤元素分布特征及其与病情的关系:以四川省塘县为例[J]. 土壤学报, 2011, 48(2):230-237.
[15] Zhang B J, Yang L S, Wang W Y, et al. Distribution of soil elements and its relationship with kaschin-back disease in KBD afflicted regions:A case study of Rangtang County, Sichuan Province[J]. Acta Pedologica Sinica, 2011, 48(2):230-237.
[16] 张靖源, 陈剑平, 黄韶华, 等. 广西鹿寨水稻及其种植土壤中硒质量分数分布特征[J]. 南方农业学报, 2016, 47(11):1856-1860.
[16] Zhang J Y, Chen J P, Huang S H, et al. Distribution characteristics of selenium content in rice and rhizosphere soil in Luzhai, Guangxi[J]. Journal of Southern Agriculture, 2016, 47(11):1856-1860.
[17] 张栋, 翟勇, 张妮, 等. 新疆水稻主产区土壤硒含量与水稻籽粒硒含量的相关性[J]. 中国土壤与肥料, 2017(1):139-143.
[17] Zhang D, Zhai Y, Zhang N, et al. Correlation between soil selenium content and rice grain selenium content in Xinjiang rice production areas[J]. Soils and Fertilizers Sciences in China, 2017(1):139-143.
[18] 吴永尧, 彭振坤, 罗泽民. 水稻对硒的生物富集作用动态研究[J]. 华中师范大学学报:自然科学版, 1998, 32(4):490-494.
[18] Wu Y Y, Peng Z K, Luo Z M. Research on the dynamics of bioaccumulation of Se in rice[J]. Journal of Central China Normal University:Natural Science Edition, 1998, 32(4):490-494.
[19] Wang Z J, Gao Y X. Biogeochemical cycling of selenium in Chinese environments[J]. Applied Geochemical, 2001, 16(11/12): 1345-1351.
[20] Huang S, Hua M, Feng J, et al. Assessment of selenium pollution in agriculture soil in the Xuzhou District, Northwest Jiangsu, China[J]. Journal Environment Science, 2009, 21(4): 481-487.
doi: 10.1016/S1001-0742(08)62295-0
[21] 中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. GB 2726—2017 食品安全国家标准食品中污染物限量[S]. 北京: 中国标准出版社, 2017.
[21] National Health and Family Planning Commission of the People's Republic of China,State Food and Drug Administration. GB 2726—2017 National Food Safety Standard Limits of Contaminants in Foods[S]. 北京: China Standard Press, 2017.
[22] 李杰, 朱立新, 康志强. 南宁市郊周边农田土壤—农作物系统重金属元素迁移特征及其影响因素[J]. 中国岩溶, 2018, 37(1):43-52.
[22] Li J, Zhu L X, Kang Z Q. Characteristics of transfer and their influencing factors of heavy metals soil-crop system of peri-urban agricultural soil of Nanning, South China[J]. Carsologica Sinica, 2018, 37(1):43-52.
[23] 胡艳华, 王加恩, 蔡子华, 等. 浙北嘉善地区土壤硒的含量、分布及其影响因素初探[J]. 地质科技情报, 2010, 29(6):84-88.
[23] Hu Y H, Wang J E, Cai Z H, et al. Content, distribution and influencing factors of selenium in soil of Jiashan Area, Northern Zhejiang Province[J]. Geological Science and Technology Information, 2010, 29(6):84-88.
[24] 刘永贤, 陈锦平, 潘丽萍, 等. 浔郁平原富硒土壤成因及其影响因素研究[J]. 土壤, 2018, 50(6):1139-1144.
[24] Liu Y X, Chen J P, Pan L P, et al. Studies on causes and influential factors of selnium-rich Soil in Xunyu Plain[J]. Soils, 2018, 50(6):1139-1144.
[25] Yang Z F, Tao Y U, Hou Q Y, et al. Geochemical characteristics of soil selenium in farmland of Hainan island[J]. Geoscience, 2012, 26(5): 837-849.
[26] 曾庆良, 余涛, 王锐. 土壤硒含量影响因素及富硒土地资源区划研究:以湖北恩施沙地为例[J]. 现代地质, 2018, 33(1):105-112.
[26] Zeng Q L, Yu T, Wang R. The influencing factors of selenium in soils and classifying the selenium-rich soil resources in the typical area of Enshi, Hubei[J]. Geoscience, 2018, 33(1):105-112.
[27] Supriatin S, Weng L, Comans R N J. Selenium-rich dissolved organic matter determines selenium uptake in wheat grown on low-selenium arable land soil[J]. Plant and Soil, 2016, 408(1/2): 76-94.
[28] Matos R P, Lima V M P, Windmoller C C, et al. Correlation between the nature levels of selenium and soil physicochemical characteristics from the Jequitinhonha Valley(MG), Brazil[J]. Journal of Geochemical Exploration, 2016, 172: 195-202.
doi: 10.1016/j.gexplo.2016.11.001
[29] 徐文波, 朱建明, 秦海波, 等. 铁/锰和铝氧化物吸附硒的行为研究[J]. 矿物学报, 2017, 37(3):357-365.
[29] Xu W P, Zhu J M, Qin H B, et al. A study on selenium oxyanions adsorbed onto Iron/Manganese/Aluminum oxides[J]. Acta Mineralogicasinica, 2017, 37(3):357-365.
[30] Winkel L H, Johnson C A, Lenz M, et al. Environment selenium research: From microscopic to global understanding[J]. Environment Science & Technology, 2012, 46(2): 571-579.
doi: 10.1021/es203434d
[31] 吴永尧, 罗泽民, 彭振坤. 水稻对硒的生物富集分布[J]. 湖南师范大学:自然科学学报, 1998, 21(4):76-79.
[31] Wu Y Y, Luo Z M, Peng Z K. Studies of the selenium bio-accumulation and distribution in rice[J]. Journal of Natural Science of Human Normal University, 1998, 21(4):76-79.
[32] Johnsson L. Selenium uptake by plants as a function of soil type, organic matter content and pH[J]. Plant and Soil, 1991, 133(1): 57-64.
doi: 10.1007/BF00011899
[33] 罗杰, 王佳媛, 游远航, 等. 硒在土壤—水稻系统中的迁移转化规律[J]. 西南师范大学学报:自然科学版, 2012, 37(3):60-66.
[33] Luo J, Wang J Y, You Y H, et al. Migration and transformation of Se in the soil-rice system[J]. Journal of Southwest China Normal University:Natural Science Edition, 2012, 37(3):60-66.
[34] Liu J, Peng Q, Liang D L, et al. Effect of aging on the fraction distribution and bioavailability of selenium in three different soils[J]. Chemosphere, 2016, 144: 2351-2359.
doi: 10.1016/j.chemosphere.2015.11.011
[35] Li Z, Liang D, Peng Q, et al. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review[J]. Geoderma, 2017, 295: 69-79.
doi: 10.1016/j.geoderma.2017.02.019
[36] 周小娟, 张嫣, 祝莉玲, 等. 武汉市侏儒—消泗地区农田系统中硒的分布特征及有效性研究[J]. 地质科技情报, 2016, 35(4):158-163.
[36] Zjou X J, Zhang Y, Zhu L L, et al. Research on selenium distribution and effectiveness in the farm system in Zhuru and Xiaosi areas, Wuhan City[J]. Geological Science and Technology Information, 2016, 35(4):158-163.
[37] 刘帅, 吴志超, 赵亚荣, 等. 外源硒对镉胁迫下菜心 Fe、Mn、 Cu、Zn 吸收与转运的影响[J]. 农业环境科学学报, 2018, 37(3):431-439.
[37] Liu S, Wu Z C, Zhao Y R, et al. Effects of selenium on the uptake and transport of trace elements by cadmium-stressed flowering Chinese cabbage[J]. Journal of Agro-Environment Science, 2018, 37(3):431-439.
[38] Kikkert J, Berkelaar E. Plant uptake and translocation of inorganic forms Slenium[J]. Archives of Environment Contamination & Toxicology, 2013, 65(3): 485-465.
[39] Djanaguiraman M, Devi D D, Shanker A K, et al. Selenium-an antioxidative protectant in soybean during senescence[J]. Pant & Soil, 2005, 272(1/2): 77-86.
[40] Shanker K, Srivastava M M. Uptake and translocation of selenium by maize (Zea mays) from its environmentaly important forms[J]. Journal Environmental Biology, 2001, 22(3): 225-228.
[41] Zhang Y, Pan G, Chen J, et al. Uptake and transport of selenite and selenite by soybean seedings of two genotypes[J]. Plant and Soil, 2003, 253(2): 437-443.
doi: 10.1023/A:1024874529957
[42] Wang D, Zhou F, Yang W, et al. Selenium redistribution during aging in different Chinese soil and the dominant influential factors[J]. Chemosphere, 2017, 182: 284-292.
doi: S0045-6535(17)30709-9 pmid: 28500973
[1] 范海印, 宋蕊蕊, 于林松, 滕永波, 万方, 张秀文, 李圣玉, 赵闯. 鲁西北地区某典型化工园区地下水重金属污染特征及健康风险评价[J]. 物探与化探, 2023, 47(5): 1326-1335.
[2] 任蕊, 张志敏, 王晖, 陈继平, 乔新星, 梁东丽. 陕西关中土壤富硒标准研究与探讨——以小麦为例[J]. 物探与化探, 2023, 47(5): 1354-1360.
[3] 杨婵, 吴娟娟, 车旭曦, 岳思羽, 刘智峰, 宋凤敏. 汉江上游水体沉积物污染状况分析与评价[J]. 物探与化探, 2023, 47(5): 1361-1370.
[4] 田强国, 侯进凯, 杨在伟, 李立园. 河南省洛阳市土壤硒全量、有效性及形态分布特征[J]. 物探与化探, 2023, 47(5): 1371-1378.
[5] 王惠艳, 彭敏, 马宏宏, 张富贵. 贵州典型重金属高背景区耕地土壤重金属生态风险评价[J]. 物探与化探, 2023, 47(4): 1109-1117.
[6] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[7] 张亚峰, 姬丙艳, 沈骁, 姚振, 马强, 王帅, 贺连珍, 韩伟明. 西宁盆地咸水湖相沉积型富硒土壤的形成机理及意义[J]. 物探与化探, 2023, 47(2): 470-476.
[8] 李世宝, 杨立国, 熊万里, 马志超, 袁宏伟, 段吉学. 内蒙古巴彦淖尔市临河区富硒耕地硒形态特征及其影响因素[J]. 物探与化探, 2023, 47(2): 477-486.
[9] 王磊, 卓小雄, 吴天生, 凌胜华, 钟晓宇, 赵晓孟. 调查评价的土壤元素累积趋势预测——以广西南宁市西乡塘区为例[J]. 物探与化探, 2023, 47(1): 1-13.
[10] 王志强, 杨建锋, 石天池. 宁夏石嘴山地区富硒土壤及其利用前景[J]. 物探与化探, 2023, 47(1): 228-237.
[11] 姚凌阳, 谢淑云, 鲍征宇, 马明, 万能. 不同类型富硒土壤的生物有效硒特征[J]. 物探与化探, 2023, 47(1): 238-246.
[12] 邹山进洪. 闽侯县表层土壤及农产品硒含量特征[J]. 物探与化探, 2023, 47(1): 247-256.
[13] 梁帅, 戴慧敏, 赵君, 刘国栋, 刘凯, 翟富荣, 韩晓萌, 魏明辉, 张哲寰. 黑龙江双阳河流域土壤—水稻—人体系统锗的分布特征、迁移转化及影响因素[J]. 物探与化探, 2022, 46(6): 1555-1564.
[14] 马常莲, 周金龙, 曾妍妍, 任贵兵, 王松涛. 新疆若羌县农用地表层土壤硒氟碘地球化学特征[J]. 物探与化探, 2022, 46(6): 1573-1580.
[15] 宋运红, 杨凤超, 刘凯, 戴慧敏, 许江, 杨泽. 三江平原耕地土壤重金属元素分布特征及影响因素的多元统计分析[J]. 物探与化探, 2022, 46(5): 1064-1075.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com