Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (2): 490-501    DOI: 10.11720/wtyht.2022.1417
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
北京东南郊土壤重金属元素分布及其在表层土壤中的富集特征
张沁瑞1(), 李欢1(), 邓宇飞2, 黄勇1, 张博1, 许一波3
1.北京市地质勘察技术院,北京 100120
2.中化地质矿山总局地质研究院,北京 100101
3.河北经贸大学 公共管理学院,河北 石家庄 050062
Distribution of heavy metal elements in soil of the Southeastern suburbs of Beijing and their enrichment characteristics in surface soil
ZHANG Qin-Rui1(), LI Huan1(), DENG Yu-Fei2, HUANG Yong1, ZHANG Bo1, XU Yi-bo3
1. Beijing Institute of Geo-exploratin Technology,Beijing 100120,China
2. China Chemical Geology and Mine Bureau Research Institude of Geological,Beijing 100101,China
3. School of Public Administration,Hebei University of Economics and Business,Shijiazhuang 050062,China
全文: PDF(3098 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

通过采集并分析北京东南郊地区表层(0~20 cm)和深层(160~200 cm)土壤样品的重金属元素,查明该地区土壤中元素分布特征,并通过建立半变异函数模型探讨重金属元素的空间自相关性,利用富集系数探讨元素在表层土壤中的富集特征,在此基础上划分出重金属元素显著富集区,并对富集原因进行了深入解释和分析。结果表明:研究区表层土壤Cd、Cu、Hg、Pb、Zn总体含量水平明显高于深层,差距在1.2~3.9倍不等;与北京地区和中国地区土壤重金属元素含量相比,研究区土壤中相对富集Cd、Hg。受成土母质来源差异性和人类活动等诸多因素的影响,表层土壤As、Cr空间自相关性较强,深层土壤Cr空间自相关性较弱,表层和深层其他元素空间自相关性中等。As、Ni、Cr在表层土壤中的富集程度较弱,而Cu、Pb、Zn、Cd、Hg富集程度较强,富集程度最强的是Hg。以富集系数作为参考依据,圈定出5处重金属元素的显著富集区域,清晰地反映了人类生活、农业种植、工业生产等均是造成重金属元素在表层土壤中富集的重要影响因素;因此,需要密切关注人类居住区、农业种植区、工业企业分布区的土壤元素分布状况,以防止土壤环境恶化和保障生态环境安全。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张沁瑞
李欢
邓宇飞
黄勇
张博
许一波
关键词 土壤重金属元素空间结构分布特征富集特征    
Abstract

By collecting and analyzing the heavy metal elements insurface (0~20 cm) and deep (160~200 cm) soil samples in southeastern suburbs of Beijing, the distribution characteristics of elements in soil in this area were ascertained.The spatial autonomy of heavy metal elementswas explored by establishing a semivariogram model. The enrichment characteristics of elements in surface soil were discussed,as well as the correlation of the enrichment coefficient. On this basis of the research, the significant enrichment areas of heavy metal elements are divided, and the reasons for the enrichment are explained and analyzed in depth.The results show that:The content levels of Cd, Cu, Hg, Pb, and Zn in surface soil of the study area are significantly higher than those in the deep layer, with a gap of 1.2 to 3.9 times. Compared with soil’s heavy metal content in Beijing and China,, the soils in the study area is relatively rich in Cd and Hg. As it was affected by many factors such as the source of soil-forming parent material and human activities, the spatial autocorrelation of As and Cr in surface soil is strong, and the spatial autocorrelation of Cr in the deep soil is weak. The spatial autocorrelation of other elements in the surface and deep layers is medium. As, Ni, and Cr in the surface soil are weakly enriched.But Cu, Pb, Zn, Cd, Hg are strongly enriched, and Hg is the most enriched. Based on the enrichment coefficient, five significant enrichment areas of heavy metal elements are delineated.The division of this area clearly reflects that human life, agricultural planting, and industrial production are important factors that cause the accumulation of heavy metal elements in surface soil.Therefore, it is necessary to pay close attention to the distribution of soil elements in human settlements, agricultural planting areas, and industrial enterprise distribution areas. The purpose is to prevent the deterioration of the soil environment and ensure the safety of the ecological environment.

Key wordssoil    heavy metal elements    spatial structure    distribution properties    enrichment characteristics
收稿日期: 2021-07-29      修回日期: 2021-12-13      出版日期: 2022-04-20
ZTFLH:  P632  
基金资助:北京市财政项目“北京市土地质量生态地球化学监测网运行”(11000022T000000439575);“京西‘一线四矿’及周边区域生态地质专项调查与评价示范”(11000022T000000491145)
通讯作者: 李欢
作者简介: 张沁瑞(1980-),男,大学本科,从事水工环地质研究工作。Email: 18601040279@163.com
引用本文:   
张沁瑞, 李欢, 邓宇飞, 黄勇, 张博, 许一波. 北京东南郊土壤重金属元素分布及其在表层土壤中的富集特征[J]. 物探与化探, 2022, 46(2): 490-501.
ZHANG Qin-Rui, LI Huan, DENG Yu-Fei, HUANG Yong, ZHANG Bo, XU Yi-bo. Distribution of heavy metal elements in soil of the Southeastern suburbs of Beijing and their enrichment characteristics in surface soil. Geophysical and Geochemical Exploration, 2022, 46(2): 490-501.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1417      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I2/490
Fig.1  研究区采样点位
分析指标 规范要求 检出限 分析方法
As
Hg
1
0.005
0.011
0.0004
微波消解/原子荧光法(AFS)
Cd 0.03 0.017 电感耦合等离子质谱法(ICP-MS)
Cr 5 0.0003 电感耦合等离子体光谱法(ICP-OES)
Cu 1 0.4889
Ni 2 0.0002
Pb 2 0.0008
Zn 4 0.0096
Al2O3 0.05 0.008 X射线荧光光谱法(XRF)
pH 0.10 0.03 pH计
Table 1  各项指标的分析方法及检出限
项目 As Cd Cr Cu Hg Ni Pb Zn
表层 X/10-6 8.64 0.171 55.1 24.9 0.079 27.3 25.5 76.1
Xmin/10-6 3.89 0.070 37.6 12.6 0.011 17.8 17.7 37.3
Xmed/10-6 8.61 0.165 55.0 24.3 0.059 26.8 24.9 73.4
Xmax/10-6 20.7 0.611 81.8 122 1.54 46.3 70.4 288
S/10-6 2.20 0.058 6.20 9.30 0.126 4.40 5.50 23.1
Cv/% 25.5 33.4 11.2 36.4 134 16.0 21.4 30.3
深层 X/10-6 8.76 0.108 53.8 21.0 0.026 26.8 20.4 59.4
Xmin/10-6 1.82 0.040 15.9 4.50 0.005 8.30 13.4 20.2
Xmed/10-6 8.52 0.104 52.9 20.6 0.015 26.2 20.0 57.8
Xmax/10-6 28.6 0.550 128 39.9 0.882 47.7 46.8 107
S/10-6 3.97 0.049 12.1 7.60 0.064 7.80 4.20 17.6
Cv/% 45.4 44.6 22.4 36.1 244 29.0 20.7 29.6
北京市表层土壤/1 0 - 6 [ 45 ] 9.30 0.147 66.0 23.0 0.045 27.0 25.0 67.0
北京市深层土壤/1 0 - 6 [ 45 ] 9.70 0.096 67.0 23.0 0.023 29.0 23.0 64.0
中国表层土壤/1 0 - 6 [ 45 ] 8.50 0.140 58.0 23.0 0.066 25.0 24.0 69.0
中国深层土壤/1 0 - 6 [ 45 ] 8.40 0.095 58.0 20.0 0.017 26.0 20.0 62.0
Table 2  表层土壤、深层土壤重金属元素统计特征值
Fig.2  土壤重金属元素中位值对比
项目 拟合模型 块金值(C0) 基台值
(C0+C)
变程(a)/
km
回归系数
(R2)
块基比
[C0/(C0+C)]
残差
(RSS)
表层 As 指数模型 0.590 4.43 1.56 0.749 13.33% 0.512
Cd 指数模型 0.0366 0.0733 7.32 0.883 49.93% 1.21×10-4
Cr 指数模型 5.00 36.8 2.27 0.817 13.58% 52.1
Cu 指数模型 21.3 42.6 28.0 0.940 49.99% 10.1
Hg 指数模型 0.275 0.589 18.2 0.950 46.69% 2.92×10-3
Ni 指数模型 7.16 18.4 3.18 0.852 38.87% 8.8
Pb 指数模型 5.87 14.7 6.18 0.919 40.07% 4.9
Zn 指数模型 130 281 15.0 0.958 46.23% 655
深层 As 指数模型 0.119 0.239 4.79 0.957 49.79% 4.10×10-4
Cd 线性模型 0.105 0.143 23.8 0.868 73.53% 2.49×10-3
Cr 线性模型 0.0421 0.0511 23.8 0.831 82.37% 1.90×10-5
Cu 线性模型 0.127 0.193 23.8 0.934 65.87% 3.53×10-4
Hg 指数模型 0.122 0.325 39.2 0.948 37.55% 5.35×10-4
Ni 线性模型 0.0785 0.101 23.8 0.870 71.42% 1.69×10-4
Pb 指数模型 0.0207 0.0419 11.1 0.970 49.31% 1.04×10-5
Zn 线性模型 0.0671 0.111 23.8 0.965 60.29% 8.18×10-5
Table 3  土壤元素半变异函数理论模型及相关参数
项目 As Cd Cr Cu Hg Ni Pb Zn
相关性 0.236* 0.095 0.243* 0.285* 0.745* 0.321* 0.385* 0.289*
Table 4  表层与深层土壤重金属元素之间的相关性
Fig.3  土壤重金属元素富集程度占比统计
Fig.4  土壤重金属元素富集系数空间分布
Fig.5  表层土壤重金属元素显著富集区域划分
[1] 陈怀满. 环境土壤学[M]. 北京: 科学出版社, 2006.
[1] Chen H M. Environmental soil science[M]. Beijing: Science Press, 2006.
[2] 杨忠芳, 朱立, 陈岳龙. 现代环境地球化学[M]. 北京: 地质出版社, 1996.
[2] Yang Z F, Zhu L, Chen Y L. Modern environmental geochemistry[M]. Beijing: Geological Publishing House, 1996.
[3] 魏赢, 刘阳生. 汞污染农田土壤的化学稳定化修复[J]. 环境工程学报, 2017, 11(3):1878-1884.
[3] Wei Y, Liu Y S. Remediation on mercury polluted farmland soil by chemical stabilization[J]. Chinese Journal of Environmental Engineering, 2017, 11(3):1878-1884.
[4] 卢光华, 岳昌盛, 彭犇, 等. 汞污染土壤修复技术的研究进展[J]. 工程科学学报, 2017, 39(1):1-12.
[4] Lu G H, Yue C S, Peng B, et al. Review of research progress on the remediation technology of mercury contaminated soil[J]. Chinese Journal of Engineering, 2017, 39(1): 1-12.
[5] 王彬武, 李红, 蒋红群, 等. 北京市耕地土壤重金属时空变化特征初步研究[J]. 农业环境科学学报, 2014, 33(7):1335-1344.
[5] Wang B W, Li H, Jiang H Q, et al. Spatio-temporal variation of soil heavy metals in agricultural land in Beijing, China[J]. Journal of Agro-Environment Science, 2014, 33(7): 1335-1344.
[6] 赵秀芳, 张永帅, 冯爱平, 等. 山东省安丘地区农业土壤重金属元素地球化学特征及环境评价[J]. 物探与化探, 2020, 44(6):1446-1454.
[6] Zhao X F, Zhang Y S, Feng A P, et al. Geochemical characteristics and environmental assessment of heavy metal elements in agricultural soil of Anqiu area, Shandong Province[J]. Geophysical and Geochemical Exploration, 2020, 44(6): 1446-1454.
[7] 李括, 彭敏, 赵传冬, 等. 全国土地质量地球化学调查二十年[J]. 地学前缘, 2019, 26(6):128-158.
[7] Li K, Peng M, Zhao C D, et al. Vicennial implementation of geochemical survey of land quality in China[J]. Earth Science Frontiers, 2019, 26(6): 128-158.
[8] 王茜, 张光辉, 田言亮, 等. 农田表层土壤中重金属潜在生态风险效应研究[J]. 水文地质工程地质, 2017, 44(4):165-172.
[8] Wang Q, Zhang G H, Tian Y L, et al. Research on the potential ecological risk of farmland top-soil of heavy metals[J]. Hydrogeology & Engineering Geology, 2017, 44(4): 165-172.
[9] 刘伟, 郜允兵, 周艳兵, 等. 农田土壤重金属空间变异多尺度分析——以北京顺义土壤Cd为例[J]. 农业环境科学学报, 2019, 38(1):87-94.
[9] Liu W, Gao Y B, Zhou Y B, et al. Multi scale analysis of spatial variability of heavy metals in farmland soils: Case study of soil Cd in Shunyi District of Beijing, China[J]. Journal of Agro-Environment Science, 2019, 38(1): 87-94.
[10] 吴文勇, 尹世洋, 刘洪禄, 等. 污灌区土壤重金属空间结构与分布特征[J]. 农业工程学报, 2013, 29(4):165-173.
[10] Wu W Y, Yin S Y, Liu H L, et al. Spatial structure and distribution characteristics of soil heavy metals in wastewater irrigation district[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(4): 165-173.
[11] 霍霄妮, 李红, 孙丹峰, 等. 北京耕作土壤重金属含量的空间自相关分析[J]. 环境科学学报, 2009, 29(6):1339-1344.
[11] Huo X N, Li H, Sun D F, et al. Spatial autocorrelation analysis of heavy metals in cultivated soils in Beijing[J]. Acta Scientiae Circumstantiae, 2009, 29(6): 1339-1344.
[12] 郑袁明, 陈煌, 陈同斌, 等. 北京市土壤中Cr,Ni含量的空间结构与分布特征[J]. 第四纪研究, 2003(4):436-445.
[12] Zheng Y M, Chen H, Chen T B, et al. Spatial distribution patterns of Cr and Ni in soils of Beijing[J]. Quaternary Sciences, 2003(4): 436-445.
[13] 张妍, 李玉嵩, 盛奇, 等. 河南省商丘地区土壤地球化学特征[J]. 现代地质, 2019, 33(2):305-314.
[13] Zhang Y, Li Y S, Sheng Q, et al. Soil geochemical characteristics of Shangqiu area in Henan Province[J]. Geoscience, 2019, 33(2): 305-314.
[14] 陈兴仁, 陈富荣, 贾十军, 等. 安徽省江淮流域土壤地球化学基准值与背景值研究[J]. 中国地质, 2012, 39(2):302-310.
[14] Chen X R, Chen F R, Jia S J, et al. Soil geochemical baseline and background in Yangtze River—Huaihe River basin of Anhui Province[J]. Geology in China, 2012, 39(2): 302-310.
[15] 廖启林, 刘聪, 许艳, 等. 江苏省土壤元素地球化学基准值[J]. 中国地质, 2011, 38(5):1363-1378.
[15] Liao Q L, Liu C, Xu Y, et al. Geochemical baseline values of elements in soil of Jiangsu Province[J]. Geology in China, 2011, 38(5): 1363-1378.
[16] 曹峰, 李瑞敏, 王轶, 等. 海河平原北部地区土壤地球化学基准值与环境背景值[J]. 地质通报, 2010, 29(8):1215-1219.
[16] Cao F, Li R M, Wang Y, et al. Soil geochemical baseline and environmental background values in northern Haihe Plain, China[J]. Geological Bulletin of China, 2010, 29(8): 1215-1219.
[17] 陈国光, 奚小环, 梁晓红, 等. 长江三角洲地区土壤地球化学基准值及其应用探讨[J]. 现代地质, 2008, 22(6):1041-1048.
[17] Chen G G, Xi X H, Liang X H, et al. Soil geochemical baselines of the Yangtze River Delta and their significances[J]. Geoscience, 2008, 22(6): 1041-1048.
[18] 郭海全, 马忠社, 郝俊杰, 等. 冀东土壤地球化学基准值特征及研究意义[J]. 岩矿测试, 2007, 26(4):281-286.
[18] Guo H Q, Ma Z S, Hao J J, et al. Characteristics and significance of reference values of the geochemical elements in soil samples from eastern Hebei Province[J]. Rock and Mineral Analysis, 2007, 26(4): 281-286.
[19] 汪庆华, 董岩翔, 郑文, 等. 浙江土壤地球化学基准值与环境背景值[J]. 地质通报, 2007, 26(5):590-597.
[19] Wang Q H, Dong Y X, Zheng W, et al. Soil geochemical baseline values and environmental background values in Zhejiang, China[J]. Geological Bulletin of China, 2007, 26(5): 590-597.
[20] 蔡向民, 张磊, 郭高轩, 等. 北京平原地区第四纪地质研究新进展[J]. 中国地质, 2016, 43(3):1055-1066.
[20] Cai X M, Zhang L, Guo G X, et al. New progress in the study of Quaternary geology in Beijing Plain[J]. Geology in China, 2016, 43(3): 1055-1066.
[21] 蔡向民, 栾英波, 郭高轩, 等. 北京平原第四系的三维结构[J]. 中国地质, 2009, 36(5):1021-1029.
[21] Cai X M, Luan Y B, Guo G X, et al. 3D Quaternary geological structure of Beijing plain[J]. Geology in China, 2009, 36(5): 1021-1029.
[22] 李廷芳. 影响北京土壤元素背景值的成土因素[J]. 中国环境监测, 1992, 13(1):81-86.
[22] Li T F. Soil forming factors affecting soil background contents of metal elements in Beijing area[J]. Environmental Monitoring in China, 1992, 13(1): 81-86.
[23] 邓勃, 秦建侯, 李廷芳. 影响北京地区土壤元素背景值的因素分析[J]. 环境科学学报, 1986, 6(4):446-454.
[23] Deng B, Qin J H, Li T F. Analysis of factors affecting soil background contents of metal elements in Beijing area[J]. Acta Scientiae Circumstantiae, 1986, 6(4): 446-454.
[24] 奚小环, 陈国光, 张德存, 等. DZ/T 0258—2014 多目标区域地球化学调查规范(1∶250 000)[S].
[24] Xi X H, Chen G G, Zhang D C, et al. DZ/T 0258—2014 Specification of multi-purpose regional geochemical survey (1∶250 000)[S].
[25] DD2005—03 生态地球化学评价样品分析技术要求[S].
[25] DD2005—03 Technical requirements for analysis of ecological geochemical evalution samples[S].
[26] 刘永红, 倪中应, 谢国雄, 等. 浙西北丘陵区农田土壤微量元素空间变异特征及影响因子[J]. 植物营养与肥料学报, 2016, 22(6):1710-1718.
[26] Liu Y H, Ni Z Y, Xie G X, et al. Spatial variability and impacting factors of trace elements in hilly region of cropland in northwestern Zhejiang Province[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1710-1718.
[27] 祝修高, 李小梅, 沙晋明. 福州市土壤Zn、Pb元素空间变异特征及影响因子分析[J]. 福建师范大学学报:自然科学版, 2016, 32(4): 99-104.
[27] Zhu X G, Li X M, Sha J M. Spatial variability and influencing factors of Zn and Pb in soil in Fuzhou City[J]. Journal of Fujian Teachers University:Natural Science, 2016, 32(4): 99-104.
[28] 王雪梅, 柴仲平, 毛东雷, 等. 库车县土壤微量元素空间变异特征分析[J]. 西南农业学报, 2015, 28(4):1746-1751.
[28] Wang X P, Chai Z P, Mao D L, et al. Analysis of spatial variability characteristics of soil trace elements in Kuqa County[J]. Southwest China Journal of Agricultural Sciences, 2015, 28(4): 1746-1751.
[29] 郭安廷, 崔锦霞, 许鑫, 等. 基于GIS与地统计的土壤养分空间变异研究[J]. 中国农学通报, 2018, 34(23):72-79.
[29] Guo A T, Cui J X, Xu X, et al. Spatial distribution of soil nutrients based on GIS and geostatistics[J]. Chinese Agricultural Science Bulletin, 2018, 34(23): 72-79.
[30] 郭鹏, 徐丽萍, 常存. 北疆小尺度滴灌棉田土壤全氮半变异函数建模及空间变异特征[J]. 西北农业学报, 2013, 22(6):79-84.
[30] Guo P, Xu L P, Chang C. Semivariogram modeling and spatial variation of drip irrigation soil total nitrogen at small scale cotton field in North Xinjiang[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2013, 22(6): 79-84.
[31] 胡以铿. 地球化学中的多元分析[M]. 北京: 中国地质大学出版社, 1991.
[31] Hu Y K. Multivariate analysis in geochemistry[M]. Beijing: China University of Geosciences Press, 1991.
[32] 杨全合, 安永龙. 基于地统计学和GIS的通州区于家务乡土壤肥力综合评价[J]. 西南农业学报, 2019, 32(4):882-891.
[32] Yang Q H, An Y L. Comprehensive evaluation of soil fertility in Yujiawu Town of Tongzhou District using geostatistics and GIS[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(4): 882-891.
[33] 安永龙, 杜子图, 黄勇. 基于地统计学和GIS技术的北京市大兴区礼贤镇土壤养分空间变异性研究[J]. 现代地质, 2018, 32(6):1311-1321.
[33] An Y L, Du Z T, Huang Y. Spatial variation analysis of soil nutrients in Lixian Town of Daxing District in Beijing based on geostatistics and GIS[J]. Geoscience, 2018, 32(6): 1311-1321.
[34] 李洪芬, 胡光道, 李江风. 基于地质统计学方法的土地利用空间变异尺度分析[J]. 地理与地理信息科学, 2008, 24(5):6-10.
[34] Li H F, Hu G D, Li J F. Grain analysis of land use spatial pattern based on geo-statistic method[J]. Geography and Geo-Information Science, 2008, 24(5): 6-10.
[35] 刘伟, 郜允兵, 潘瑜春. 农田土壤重金属空间变异多尺度研究[J]. 江苏农业科学, 2018, 46(23):357-361.
[35] Liu W, Gao Y B, Pan Y C. Multi-scale study on spatial variation of heavy metals in farmland soils[J]. Jiangsu Agricultural Sciences, 2018, 46(23): 357-361.
[36] 杨之江, 陈效民, 景峰, 等. 基于GIS和地统计学的稻田土壤养分与重金属空间变异[J]. 应用生态学报, 2018, 29(6):1893-1901.
[36] Yang Z J, Chen X M, Jing F, et al. Spatial variability of nutrients and heavy metals in paddy field soils based on GIS and Geostatistics[J]. Chinese Journal of Applied Ecology, 2018, 29(6): 1893-1901.
[37] 张瑞, 戴伟, 庞欢, 等. 北京市北运河流域耕地土壤性质空间变异性[J]. 生态学杂志, 2014, 33(12):3368-3373.
[37] Zhang R, Dai W, Pang H, et al. Spatial variations in soil properties of cropland in North Canal basin in Beijing[J]. Chinese Journal of Ecology, 2014, 33(12): 3368-3373.
[38] 舒彦军, 张立亭. 求解半变异函数的常用方法与新方法研究[J]. 测绘与空间地理信息, 2012, 35(5):24-27.
[38] Shu Y J, Zhang L T. Study of the commonly used methods and new methods of solving semi-variogram[J]. Geomatics & Spatial Information Technology, 2012, 35(5): 24-27.
[39] Pardo-Iguzquiza E, Chica-Olmo M. Geostatistics with the Matern semivariogram model: A library of computer programs for inference, kriging and simulation[J]. Computers and Geosciences, 2007, 34(9):1073-1079.
doi: 10.1016/j.cageo.2007.09.020
[40] Obroślak R, Dorozhynskyy O. Selection of a semivariogram model in the study of spatial distribution of soil moisture[J]. Journal of Water and Land Development, 2017, 35(1):161-166.
doi: 10.1515/jwld-2017-0080
[41] 谢团辉, 郭京霞, 陈炎辉, 等. 福建省某矿区周边土壤—农作物重金属空间变异特征与健康风险评价[J]. 农业环境科学学报, 2019, 38(3):544-554.
[41] Xie T H, Guo J X, Chen Y H, et al. Spatial variability and health risk assessment of heavy metals in soils and crops around the mining area in Fujian Province, China[J]. Journal of Agro-Environment Science, 2019, 38(3): 544-554.
[42] 代杰瑞, 庞绪贵, 喻超, 等. 山东省东部地区土壤地球化学基准值与背景值及元素富集特征研究[J]. 地球化学, 2011, 40(6):577-587.
[42] Dai J R, Pang X G, Yu C, et al. Geochemical baselines and background values and element enrichment characteristics in soils in eastern Shandong Province[J]. Geochimica, 2011, 40(6): 577-587.
[43] 廖启林, 刘聪, 金洋, 等. 江苏省域土壤元素地表富集及其与人为活动的关系研究[J]. 第四纪研究, 2013, 33(5):972-985.
[43] Liao Q L, Liu C, Jin Y, et al. Surface environmental enrichment of some elements and its relationship between anthropogenic activity and elemental distribution in soil in Jiangsu Province[J]. Quaternary Sciences, 2013, 33(5): 972-985.
[44] 张秀芝, 鲍征宇, 唐俊红. 富集因子在环境地球化学重金属污染评价中的应用[J]. 地质科技情报, 2006, 25(1):65-72.
[44] Zhang X Z, Bao Z Y, Tang J H. Application of the enrichment factor in evaluating of heavy metals contamination in the environmental geochemistry[J]. Geological Science and Technology Information, 2006, 25(1): 65-72.
[45] 侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020.
[45] Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical parameters in China[M]. Beijing: Geological Publishing House, 2020.
[46] 陈志凡, 赵烨, 郭廷忠, 等. 污灌条件下重金属在耕作土壤中的积累与形态分布特征——以北京市通州区凤港减河污灌区农用地为例[J]. 地理科学, 2013, 33(8):1014-1021.
doi: 10.13249/j.cnki.sgs.2013.08.1014
[46] Chen Z F, Zhao Y, Guo T Z, et al. Impacts of sewage irrigation on heavy metal distribution and chemical fractions in arable soils: A case study about sewage-irrigated farmlands of the Fenggangjian River in Tongzhou District of Beijing, China[J]. Scientia Geographica Sinica, 2013, 33(8): 1014-1021.
[47] 朱宇恩, 赵烨, 李强, 等. 北京市郊污灌区镉、铜在小麦中的富集特征[J]. 安全与环境学报, 2011, 11(2):15-20.
[47] Zhu Y E, Zhao Y, Li Q, et al. Translocation and enrichment characteristics of cadmium and copper in Triticum aestivum in sewage-irrigated suburb area of Beijing[J]. Journal of Safety and Environment, 2011, 11(2): 15-20.
[48] 胡文, 王海燕, 查同刚, 等. 北京市凉水河污灌区土壤重金属累积和形态分析[J]. 生态环境, 2008, 17(4):1491-1497.
[48] Hu W, Wang H Y, Zha T G, et al. Soil heavy metal accumulation and speciation in a sewage-irrigated areaalong the Liangshui River, Beijing[J]. Ecology and Environmental Sciences, 2008, 17(4): 1491-1497.
[49] 李艳玲, 卢一富, 陈卫平, 等. 工业城市农田土壤重金属时空变异及来源解析[J]. 环境科学, 2020, 41(3):1432-1439.
[49] Li Y L, Lu Y F, Chen W P, et al. Spatial-temporal variation and source change of heavy metals in the cropland soil in the industrial city[J]. Environmental Science, 2020, 41(3): 1432-1439.
doi: 10.1021/es062490m
[50] 崔邢涛, 秦振宇, 栾文楼, 等. 河北省保定市平原区土壤重金属污染及潜在生态危害评价[J]. 现代地质, 2014, 28(3):523-530.
[50] Cui X T, Qin Z Y, Luan W L, et al. Assessment of the heavy metal pollution and the potential ecological hazard in soil of plain area of Baoding City of Hebei Province[J]. Geoscience, 2014, 28(3): 523-530.
[51] 成杭新, 李括, 李敏, 等. 中国城市土壤化学元素的背景值与基准值[J]. 地学前缘, 2014, 21(3):265-306.
[51] Cheng H X, Li K, Li M, et al. Geochemical background and baseline value of chemical elements in urban soil in China[J]. Earth Science Frontiers, 2014, 21(3): 265-306.
[52] 蔡阳阳, 杨复沫, 贺克斌, 等. 北京城区大气干沉降的水溶性离子特征[J]. 中国环境科学, 2011, 31(7):1071-1076.
[52] Cai Y Y, Yang F M, He K B, et al. Characteristics of water-soluble ions in dry deposition in urban Beijing[J]. China Environmental Science, 2011, 31(7): 1071-1076.
[53] 倪琳, 崔小峰, 徐立家, 等. 燃料煤重金属元素在飞灰及炉渣中的分布与富集研究[J]. 煤炭科学技术, 2020, 48(5):203-208.
[53] Ni L, Cui X F, Xu L J, et al. Study on distribution and enrichment of heavy metal elements in fly ash and slag from fuel coal[J]. Coal Science and Technology, 2020, 48(5): 203-208.
[54] 惠淑荣, 徐棚, 刘惠, 等. 造纸废水灌溉对辽河口湿地土壤重金属污染的评价研究[J]. 沈阳农业大学学报, 2016, 47(6):695-702.
[54] Hui S R, Xu P, Liu H, et al. Assessment of heavy metal pollution in Liaohe estuary wetland irrigated by papermaking wastewater[J]. Journal of Shenyang Agricultural University, 2016, 47(6): 695-702.
[55] 李丽锋, 苏芳莉, 关驰, 等. 造纸废水灌溉对湿地土壤重金属累积影响及趋势评价[J]. 环境科学学报, 2015, 35(9):2964-2970.
[55] Li L F, Su F L, Guan C, et al. The effect of irrigation with paper-making wastewater on the accumulation of heavy metals and their fate assessment in wetland soil[J]. Acta Scientiae Circumstantiae, 2015, 35(9): 2964-2970.
[56] 李欢, 黄勇, 张沁瑞, 等. 北京平原区土壤地球化学特征及影响因素分析[J]. 物探与化探, 2021, 45(2):502-516.
[56] Li H, Huang Y, Zhang Q R, et al. Soil geochemical characteristics and influencing factors in Beijing Plain[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 502-516.
[1] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[2] 阙泽胜, 李冠超, 胡颖, 简锐敏, 刘兵. 基于GIS的土壤环境放射性水平和风险评价[J]. 物探与化探, 2023, 47(5): 1336-1347.
[3] 姜冰, 刘阳, 吴振, 张德明, 孙增兵, 马健. 高密地区灌溉水及土壤氟地球化学特征[J]. 物探与化探, 2023, 47(5): 1348-1353.
[4] 任蕊, 张志敏, 王晖, 陈继平, 乔新星, 梁东丽. 陕西关中土壤富硒标准研究与探讨——以小麦为例[J]. 物探与化探, 2023, 47(5): 1354-1360.
[5] 田强国, 侯进凯, 杨在伟, 李立园. 河南省洛阳市土壤硒全量、有效性及形态分布特征[J]. 物探与化探, 2023, 47(5): 1371-1378.
[6] 李开富, 马欢, 张艳, 李威龙, 姜纪沂, 黄斌, 章龙管, 秦孟博. 基于时移电阻率法的平谷局部地区地下水时空特征研究[J]. 物探与化探, 2023, 47(4): 1002-1009.
[7] 袁玉婷, 刘雪敏, 王学求, 谭亲平. 硫、铅同位素对地表土壤微细粒金属全量测量异常的示踪——以水银洞卡林型隐伏金矿体为例[J]. 物探与化探, 2023, 47(4): 1083-1097.
[8] 刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108.
[9] 多吉卫色, 次仁旺堆, 尼玛洛卓, 周鹏, 尼玛次仁. 西藏白朗县农田系统硒含量特征及影响因素[J]. 物探与化探, 2023, 47(4): 1118-1126.
[10] 包凤琴, 成杭新, 永胜, 周立军, 杨宇亮. 包头南郊农田土壤环境质量特征及农作物健康风险评价[J]. 物探与化探, 2023, 47(3): 816-825.
[11] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[12] 赵玉岩, 姜涛, 杨秉翰, 张泽宇, 李政赫, 李兵, 汤肖丹. 农田土壤—植物系统中钒的迁移富集规律[J]. 物探与化探, 2023, 47(3): 835-844.
[13] 张洋洋, 陈岳龙, 李大鹏, 康欢, 房明亮, 徐云亮. 冀北隐伏火山热液型铀矿地表地球化学异常[J]. 物探与化探, 2023, 47(2): 300-308.
[14] 胡梦颖, 张鹏鹏, 徐进力, 刘彬, 张灵火, 杜雪苗, 白金峰. CEC前处理系统—凯氏定氮仪快速测定土壤中的阳离子交换量[J]. 物探与化探, 2023, 47(2): 458-463.
[15] 张亚峰, 姬丙艳, 沈骁, 姚振, 马强, 王帅, 贺连珍, 韩伟明. 西宁盆地咸水湖相沉积型富硒土壤的形成机理及意义[J]. 物探与化探, 2023, 47(2): 470-476.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com