黔南荔波县水稻—根系土系统中硒含量影响因素分析
An analysis of factors influencing the selenium content in the rice-root soil system in Libo County, southern Guizhou Province
通讯作者: 杨志忠(1982-),男,高级工程师,主要从事矿产地质勘查等技术研究工作。Email:809439420@qq.com
责任编辑: 蒋实
收稿日期: 2020-12-2 修回日期: 2021-08-24
基金资助: |
|
Received: 2020-12-2 Revised: 2021-08-24
作者简介 About authors
周文龙(1984-),男,高级工程师,硕士,主要从事矿产地质勘查、农业地质调查等技术研究工作。Email:
硒是人体必需的微量元素之一,其对重金属元素毒性具有拮抗作用,通过食物链转化方式获得硒是人体最主要和最安全可行的途径。以荔波县大面积分布的天然优质富硒耕地为研究对象,采集分析了30组水稻籽实和配套根系土样品,据此评价稻米食用安全性,研究水稻—根系土系统硒含量关系,探究土壤理化条件对水稻硒吸收运移的影响,以期为研究区富硒农业发展提供科学依据。结果显示:研究区水稻根系土硒(SeS)含量大部分达富硒水平,平均值为0.41×10-6,稻米硒(SeR)平均值0.030 7×10-6,绿色安全稻米占70%;水稻根系土中SeS和Fe2O3、Al2O3、MgO、有机质呈现显著正相关关系,且与Cr、Cd等重金属元素呈伴生关系;水稻籽实SeR与根系土SeS呈显著正相关关系,而水稻籽实硒富集系数与根系土SeS、As、Cd、Cr、Hg、Ni、Al2O3、Fe2O3、有机质等呈显著负相关关系,说明土壤有机质及铁铝氧化物对硒的吸附和固定作用降低了水稻对硒的吸收利用率,硒与重金属元素在土壤—稻米系统中的吸收运移可能具有一定拮抗作用。研究区富硒耕地资源丰富,但稻米存在Cr、Cd轻度超标的风险,发展富硒农业时应关注重金属元素生态效应。
关键词:
Selenium (Se), one of the trace elements essential to human body, plays an antagonistic role toward the toxicity of heavy metals. The most important, safe, and feasible way for human body to take Se is to transform Se via food chain. This study collected and analyzed 30 groups of samples of rice seeds and corresponding root soil from the natural high-quality Se-rich farmland that is widely distributed in Libo County. Based on this, this study evaluated the edible safety of rice, studied the selenium content in the rice-root soil system, and investigated the influence of the physical and chemical conditions of soil on rice's absorption and transport of selenium, aiming to provide a scientific basis for the development of Se-rich agriculture in the study area. The results are as follows. Most root soil of rice in the study area is Se-rich, with an average Se content of 0.41×10-6. The rice in the study area has an average w(Se) of 0.030 7×10-6, and green and safe rice accounted for 70%. For the root soil of rice in the study area, there is a significant positive correlation between w(Se) and w(Fe2O3), w(Al2O3), w(MgO), and w(organic matter), and there is associated relationship between w(Se) and some heavy metals including Cr and Cd. There was a significant positive correlation between Se content of rice seeds and that of root soil. By contrast, there is a significant negative correlation between the Se enrichment coefficient of rice and the contents of Se, As, Cd, Cr, Hg, Ni, Al2O3, Fe2O3, and organic matter in root soil. The results indicate that the absorption and fixation of Se by the organic matter and Fe-Al oxides in soil reduce rice's absorption and utilization rate of selenium. The negative correlation between Se enrichment coefficient of rice and the heavy metal contents of root soil suggests that Se may play a certain antagonistic role toward the absorption and transport of heavy metals in the soil-rice system. The study area is rich in Se-rich farmland resources, yet there is a risk that the contents of Cr and Cd in rice slightly exceeds relevant standards. Therefore, it is necessary to pay attention to the ecological effects of heavy metal elements in the development of Se-rich agriculture in the study area.
Keywords:
本文引用格式
周文龙, 杨志忠, 张涛, 忙是材, 杨正坤.
ZHOU Wen-Long, YANG Zhi-Zhong, ZHANG Tao, MANG Shi-Cai, YANG Zheng-Kun.
0 引言
硒是人类和动物所必需的微量元素,对重金属元素的毒性具有拮抗作用,具有增强人体免疫力、抗衰老、预防癌变等生物学功能[1-2]。研究认为通过食物链转化方式获得硒是人体最主要和最安全可行的途径[2]。人体硒摄入量安全范围较窄,硒缺乏可引起人类和动物发生克山病、大骨节病和白肌病等,而摄入过量的硒也可能造成硒中毒[3-4]。土壤硒是作物硒的主要来源,而土壤硒含量受成土母岩、土壤理化性质、土地利用方式、土壤有机质等因素的影响[5-6]。从世界范围来看,硒在表层土壤中分布极不均匀,我国土壤硒背景值为0.29×10-6,全国有72%的地区处于缺硒或低硒状态[5],而贵州省耕地表层土壤硒背景值为0.48×1
本文依托“贵州省荔波县耕地质量地球化学调查评价”项目成果,依据荔波县水稻根系土和水稻籽实元素及土壤理化指标数据资料,分析水稻根系土和籽实硒含量及其影响因素,开展水稻安全性评价,为荔波县绿色富硒农业发展提供科学依据。
1 研究区概况
研究区荔波县位于贵州省南部,与广西河池接壤,地理坐标东经107°37'~108°18',北纬25°7'~25°9',面积约2 431 km2,属亚热带季风气候。地貌整体呈现出北东高西南低,中部为槽谷的形态特征,主要发育岩溶—峰丛洼地、谷地地貌。大地构造上处于扬子准地台—黔南台陷与华南褶皱带的接合带,主要出露地层有南华系、震旦系、寒武系、泥盆系、石炭系、二叠系、三叠系、白垩系及第四系;岩性以碳酸盐岩为主,兼有黏土岩、泥页岩和砂岩等;土壤类型以水稻土、石灰土为主,兼有红壤、黄壤和粗骨土;耕地利用类型以水田、旱地为主,兼有果园和茶园等,其中水田广泛分布全区。
2 材料与方法
2.1 样品采集与处理
水稻与根系土样品于2018-08-30~2018-9-13水稻成熟收获季节采集,采样点位如图1。采样时以GPS定点位置为主采样点,结合地形,灵活采用“S”形、“X”形采样法在主采样点四周30~50 m范围内采集4个分样点,等分组合成1件混合水稻籽实样品;在每个水稻籽实采样点上采集根系土,采集深度为0~20 cm,组合样鲜重大于1.0 kg。样品采集时避开沟渠、田埂、路边、粪堆及微地形高低不平无代表性地段。
图1
水稻籽实样品晒干后脱粒,混合铺平,用方格法缩分,称取500 g样品装袋编号,送实验室用蒸馏水清洗干净后在自然状态下风干(温度<40 ℃),之后脱壳处理制成精米;于80~90 ℃鼓风烘干15~30 min,再于60 ℃鼓风干燥24~48 h至恒重,用食品加工机磨细至全部通过40目筛(0.42 mm),混匀备用。根系土鲜样置于通风干燥处自然风干,期间不时用木棒碾压防止板结,同时剔除植物根系、秸秆、石块、虫体等杂质,过10目筛(2.0 mm),混匀,称取200 g样品送实验室;取10目(2.0 mm)样品50 g送测pH;剩余10目土壤样品继续研磨至全部过100目筛(0.149 mm),取30 g样品送测有机质;另取80 g左右100目(0.149 mm)样品用无污染行星球磨机粉碎至200目(0.074 mm),用于As、Cd、Cr、Pb、Hg、K2O、Na2O、MgO、SiO2、Al2O3、Fe2O3和CaO等指标测试。
2.2 样品分析与质量控制
样品分析测试由自然资源部昆明矿产资源监督检测中心完成。水稻籽实样品按照GB 5009.268—2016标准,采用ICAP-RQ电感耦合等离子体质谱仪测定Se、As、Cr、Hg、Cd和Pb。根系土样品按照LY/T 1239—1999标准,采用AFS-3100原子荧光光度计分析As;采用XGY-1011A型原子荧光光度计分析Hg、Se;采用ICAP-7400电感耦合等离子体光谱仪分析根系土Cr、Ni、Cu、Zn、Cd、Pb、K2O、Na2O、MgO、Fe2O3、CaO、SiO2和Al2O3;采用PHS-3E型酸度计,按照LY/T 1239—1999标准测试根系土pH。
根系土样品分析时密码插入6件国家土壤一级标准物质分析,各元素的报出率均大于99.96%,各指标测定值的准确度和精密度合格率为100%。水稻籽实样品分析测试时密码插入1件国家稻米一级标准物质分析,测定值的准确度和精密度合格率为100%。
2.3 数据处理
本次采用SPSS19.0和Microsoft Excel 2016完成数据描述性统计分析、方差分析及相关性分析,采用Arcgiss10.2和中国地质调查局发展研究中心“土地质量地球化学评价管理与维护(应用)子系统”绘制图件。
3 结果与讨论
3.1 根系土元素含量特征
研究区水稻及根系土各指标含量统计结果见表1。与全国背景值[14]相比,研究区根系土地球化学指标呈现经历强烈风化淋滤作用的典型南方酸性土壤特征,即Ca、Mg、Na和Mn大量淋失而贫化,而有机质、K、Hg、Se、Cr和Pb相对富集,体现了水稻土壤淹水还原条件和人工干预下肥力较高,而重金属元素Hg、Cr和Pb等呈现一定程度富集的特点。与贵州省耕地土壤背景值[7]相比,研究区根系土中Cd、Hg相对富集,推断与研究区荔波—独山汞矿、锑矿成矿带石炭系和泥盆系成土母岩的高Cd、Hg背景密切相关,而有机质相对富集则与研究区水稻秸秆大量还田、水淹厌氧和酸性环境条件下水田土壤有机质分解矿化速度相对较慢而积累有关。
表1 研究区水稻籽实SeR与根系土中SeS等指标统计(n=30)
Table 1
指标 | pH | SeR | SeS | As | Cd | Cr | Cu | Hg | Ni | Pb | |
---|---|---|---|---|---|---|---|---|---|---|---|
最大值 | 6.90 | 0.032 | 0.90 | 14.80 | 1.46 | 120.00 | 92.10 | 0.55 | 36.6. | 55.50 | |
最小值 | 4.58 | 0.0295 | 0.24 | 2.66 | 0.15 | 39.20 | 6.34 | 0.06 | 4.26 | 14.10 | |
平均值 | 5.37 | 0.0307 | 0.41 | 6.58 | 0.50 | 74.90 | 20.90 | 0.14 | 19.39 | 24.05 | |
变异系数/% | 11.46 | 1.99 | 33.36 | 47.35 | 66.08 | 29.65 | 80.00 | 63.60 | 46.39 | 34.22 | |
K值 | 与全国对比 | 0.80 | 0.97 | 1.41 | 0.58 | 0.15 | 1.25 | 0.93 | 1.98 | 0.72 | 1.05 |
与贵州对比 | 0.85 | 0.49 | 1.24 | 0.76 | 0.61 | 1.07 | 0.49 | 0.72 | |||
指标 | Zn | Mn | 有机质 | Fe2O3 | Al2O3 | SiO2 | CaO | MgO | Na2O | K2O | |
最大值 | 131.00 | 321.00 | 7.72 | 5.85 | 14.83 | 83.23 | 1.21 | 1.51 | 0.47 | 2.25 | |
最小值 | 18.10 | 38.30 | 2.41 | 1.28 | 5.29 | 61.79 | 0.12 | 0.25 | 0.16 | 0.32 | |
平均值 | 67.61 | 128.78 | 4.52 | 3.25 | 9.43 | 74.54 | 0.45 | 0.63 | 0.26 | 1.06 | |
变异系数/% | 43.61 | 63.65 | 27.35 | 42.73 | 30.59 | 8.91 | 57.08 | 59.10 | 32.05 | 54.85 | |
K值 | 与全国对比 | 0.91 | 0.22 | 1.60 | 1.10 | 0.75 | 1.15 | 0.30 | 0.81 | 0.17 | 1.13 |
与贵州对比 | 0.65 | 0.18 | 1.47 |
注:元素含量单位为10-6,氧化物、有机质含量单位为10-2,pH无量纲;SeR表示水稻籽实硒;SeS表示根系土全硒;其他元素指标均来自根系土;根系土元素富集系数K值=均值/全国土壤背景值(贵州省土壤背景值);全国土壤背景值引自《中国土壤元素背景值》[
研究区根系土SeS含量在(0.24~0.94)×10-6,平均值0.41×10-6,高于全国土壤Se平均值0.29×1
图2
图2
水稻根系土硒含量直方分布
Fig.2
Histogram of Selenium content distribution in rice root soil
3.2 水稻籽实元素含量及富硒与安全性评价
研究区水稻籽实SeR含量在(0.029 5~0.032)×10-6,平均值为0.030 7×10-6,接近全国水稻Se平均含量0.032×1
表2 水稻籽实中重金属元素含量特征及其超标情况(n=30)
Table 2
参数 | AsR | CdR | CrR | HgR | PbR |
---|---|---|---|---|---|
最大值(CijMax) | 0.332 | 0.780 | 1.700 | — | 0.125 |
最小值(CijMin) | 0.152 | 0.016 | 0.450 | — | 0.036 |
平均值(CijAve) | 0.225 | 0.093 | 0.923 | — | 0.067 |
食品安全标准限值(Lij) | 0.5 | 0.2 | 1.0 | 0.02 | 0.2 |
超标数量 | 0 | 1 | 9 | 0 | 0 |
超标指数(Eij) | 4.40 | 1.09~1.70 | |||
超标等级 | 重度超标 | 轻度超标 |
注:元素含量单位为10-6;“—”表示未超过检出限;食品安全标准参考《食品安全国家标准食品中污染物限量》(GB 2762—2017)[
研究区绿色安全的水稻籽实样品为21件,占比70%。土壤Cr背景值偏高是水稻籽实Cr超标的重要原因。另外,研究区水稻土pH<6.0,水稻籽实Cr超标与酸性土壤环境中重金属Cr易活化转变为水溶态、离子交换态和碳酸盐结合态等植物易吸收利用态有关[22]。因此,研究区在发展绿色富硒农业时应关注重金属元素Cd、Cr的生态效应。
3.3 根系土硒含量与土壤性质关系
前人研究认为,土壤硒含量受成土母岩、地形地貌、土壤类型、土地利用方式、土壤理化性质等诸多因素的影响[4-5,23-24],在自然成土过程中,成土母岩对土壤硒含量的影响会逐渐降低,而理化性质的影响会趋于增强[25]。从表3可以看出,根系土中SeS与Fe2O3、Al2O3、MgO、K2O、As、Cd、Cr、Hg、Ni呈极显著正相关关系(p<0.01水平),与有机质呈显著正相关关系(p<0.05水平),反映根系土中硒与重金属等元素的伴生关系,这与付中彪等对赣南地区水稻土的研究结果一致[10]。考虑到研究区水稻土为酸性,且酸性环境条件下重金属元素易于活化被农作物吸收的特点,在发展富硒农业时应关注土壤重金属元素的生态效应。
表3 水稻根系土硒与各理化指标相关系数(n=30)
Table 3
指标 | r | 指标 | r | 指标 | r |
---|---|---|---|---|---|
As | 0.746** | Pb | 0.321 | CaO | 0.313 |
Cd | 0.465** | 有机质 | 0.373* | MgO | 0.474** |
Cr | 0.514** | pH | 0.167 | K2O | 0.462** |
Cu | 0.227 | SiO2 | -0.489** | Na2O | 0.107 |
Hg | 0.577** | Fe2O3 | 0.477** | ||
Ni | 0.526** | Al2O3 | 0.424** |
注:“**”表示在0.01水平上(双侧)显著相关;“*”表示在0.05水平上(双侧)相关。
研究区根系土SeS与Fe2O3、Al2O3、MgO和K2O呈极显著正相关关系(p<0.01水平),这是因为土壤中的Fe、Al氧化物黏粒对各种形态的硒具有吸附和固定作用, Fe、Al氧化物在酸性的pH环境中带正电,可吸附硒形成内、外球表面复合体,在酸性土壤中这种吸附作用更明显[29]。研究发现,铁、锰、铝氧化物对硒的吸附作用随着土壤pH的升高而降低,在pH<6.0时,铁、锰、铝氧化物对亚硒酸盐的吸附率高达60%以上[30]。笔者对研究区岩溶洼地水稻土高硒原因的研究印证了此观点,在研究区水稻土耕作层pH<6.0的酸性条件下,铁铝氧化物黏粒对硒的吸附固定作用使得硒含量极低的碳酸盐岩发育区形成富硒水稻土[6]。
3.4 水稻籽实硒含量的影响因素
表4 水稻籽实硒与根系土理化指标相关系数(n=30)
Table 4
指标 | r | 指标 | r | 指标 | r |
---|---|---|---|---|---|
SeS | 0.167* | Ni | -0.057 | Al2O3 | -0.374** |
As | 0.279 | Pb | -0.011 | CaO | -0.168 |
Cd | 0.068 | 有机质 | -0.503** | MgO | -0.261 |
Cr | 0.099 | pH | -0.146 | K2O | -0.178 |
Cu | -0.082 | SiO2 | 0.334 | Na2O | 0.086 |
Hg | -0.024 | Fe2O3 | -0.127 |
注:“**”表示在0.01水平上(双侧)显著相关;“*”表示在0.05水平上(双侧)相关。
大量研究发现,并不是所有的硒都能被植物吸收利用,硒在土壤中以水溶态、离子交换态、碳酸盐态、腐殖酸态、铁锰氧化物态、强有机态、残渣态等多种形式存在,而土壤中供给水稻吸收利用的硒主要为水溶态和腐殖酸态,因为水溶态的硒相对较少,所以土壤中腐殖酸态硒的供给决定了水稻中硒的含量[33]。作物对养分的吸收形态主要为存在于水溶液中的离子态,而腐殖酸态的硒很容易经过矿化作用转化为无机态的硒酸盐(Se6+) 或亚硒酸盐(Se4+),这些硒酸盐或亚硒酸盐进入水溶液形成水溶态的硒从而被植物吸收[34]。付中彪研究发现水稻籽实SeR与根系土铁铝氧化物、有机碳有负相关性[10],这与土壤有机质和铁铝氧化物对硒的吸附和固定作用有关[33]。从表4可见,研究区水稻籽实SeR与根系土有机质、Al2O3呈显著负相关关系(p<0.01水平);从表5可见水稻籽实硒富集系数(KR)与根系土Al2O3、Fe2O3、SeR等呈极显著负相关关系(p<0.01水平),与根系土有机质呈显著负相关关系(p<0.05水平);同时,图3、4、5也显示随着根系土Al2O3、Fe2O3和有机质升高,水稻籽实硒富集系数(KR)呈现出整体下降的趋势,这可能与土壤有机质、铁铝氧化物等对土壤硒的吸附和固定作用有关。表4显示水稻籽实硒富集系数(KR)与根系土SeR呈极显著负相关关系(p<0.01水平),这是因为水稻根系能从土壤中富集硒,即使土壤硒含量较低时,水稻根系也能从土壤中富集硒,而土壤硒含量升高,水稻对硒的吸收利用效率有所降低[11],图6显示的水稻籽实硒富集系数(KR)随根系土SeS增加而降低也说明了这一规律。研究发现:在酸性条件下,土壤中H+的增加减少了土壤表面的负电荷,使得游离的硒酸根、亚硒酸根阴离子更容易被铁铝氧化物和腐殖质吸附[35⇓-37],从而降低了土壤中硒的生物有效性。这解释了虽然研究区大面积分布天然富硒土地,但水稻籽实硒含量普遍较低的原因。
图3
图3
水稻籽实硒富集系数KR与根系土Al2O3散点图(n=30)
Fig.3
Scatter plot of Se enrichment factor in rice seed and Al2O3 in root soil (n=30)
图4
图4
水稻籽实硒富集系数KR与根系土Fe2O3散点图(n=30)
Fig.4
Scattered plots of Se enrichment factor in rice seed and Fe2O3 in root soil (n=30)
图5
图5
水稻籽实硒富集系数KR与根系土有机质散点图(n=30)
Fig.5
Scatter plot of Se enrichment factor in rice seed and SOM in root soil (n=30)
图6
图6
水稻籽实硒富集系数KR与根系土SeS散点图(n=30)
Fig.6
Scatter plot of Se enrichment factor in rice seed and Se in root soil (n=30)
表5 水稻籽实硒富集系数(KR)与根系土理化指标相关系数(n=30)
Table 5
元素 | r | 元素 | r | 元素 | r |
---|---|---|---|---|---|
As | -0.699** | Pb | -0.216 | CaO | 0.320 |
Cd | -0.412* | SOM. | -0.447* | MgO | -0.508** |
Cr | -0.546** | pH | -0.122 | K2O | -0.461* |
Cu | -0.241 | SiO2 | 0.547** | Na2O | -0.154 |
Hg | -0.526** | Fe2O3 | -0.541** | SeR | -0.903** |
Ni | -0.529** | Al2O3 | -0.479** |
注:KR=ω(SeR)/ω(SeS);“**”表示在0.01水平上(双侧)显著相关;“*”表示在0.05水平上(双侧)相关。
研究认为,人为增加土壤硒含量可在一定程度上提高水稻硒的含量[12⇓⇓⇓-16,32-33],但当硒肥浓度过高时会毒害作物[38],造成土壤硒污染。因此,在天然富硒土壤(土壤硒含量在(0.40~3.0)×10-6之间)上种植农作物既能保证作物的正常生长[39],同时能减少富硒农产品的生产成本和环境风险。研究显示硒酸盐的生物有效性高于亚硒酸盐,植物对硒酸盐的吸收速率大于亚硒酸盐[40-41],而土壤pH的升高会抑制硒酸盐的老化从而提高硒的有效性[42],因此可采取适当的农艺手段调节土壤pH值等理化性质,增加土壤中的硒酸盐含量,以提高水稻等农作物对硒的吸收利用率,从而提高农产品中的硒含量。研究区天然绿色富硒耕地资源丰富,具有发展富硒农业得天独厚的优势。
4 结论
1) 研究区水稻根系土SeS大部分达富硒水平,为(0.24~0.94)×10-6,平均值为0.41×10-6,达到富硒耕地水平。水稻籽实的SeR平均值为0.030 7×10-6,接近于全国平均水平。
2) 在研究区酸性土壤环境条件下,水稻根系土中有机质和铁铝氧化物等对土壤硒的吸附和固定作用使得硒趋向于耕作层富集。另外,根系土中Se与As、Cd、Cr、Hg等重金属元素存在伴生关系。
3) 研究区水稻籽实SeR与根系土SeS呈显著正相关关系,而水稻籽实硒富集系数(KR)与根系土SeS、As、Cd、Cr、Hg、Ni、Al2O3、Fe2O3、有机质等呈显著负相关关系,说明土壤有机质及铁铝氧化物对硒的吸附和固定作用降低了水稻对硒的吸收利用率,硒与重金属元素在土壤—稻米系统中的吸收运移可能表现为一定拮抗作用。
4) 研究区富硒耕地土资源丰富,具备发展绿色富硒农业的天然优势,但水稻籽实存在Cr、Cd元素超标的风险,因此在发展富硒农业时应关注土壤重金属元素的生态效应。
参考文献
Selenium biochemistry and cancer: A review of the literature
[J].In recent years, the role of selenium in the prevention of a number of degenerative conditions including cancer, inflammatory diseases, thyroid function, cardiovascular disease, neurological diseases, aging, infertility, and infections, has been established by laboratory experiments, clinical trials, and epidemiological data. Most of the effects in these conditions are related to the function of selenium in antioxidant enzyme systems. Replenishing selenium in deficiency conditions appears to have immune-stimulating effects, particularly in patients undergoing chemotherapy. However, increasing the levels of selenoprotein antioxidant enzymes (glutathione peroxidase, thioredoxin reductase, etc.) appears to be only one of many ways in which selenium-based metabolites contribute to normal cellular growth and function. Animal data, epidemiological data, and intervention trials have shown a clear role for selenium compounds in both prevention of specific cancers and antitumorigenic effects in post-initiation phases of cancer.
张家口克山病地区土壤硒的地球化学形态研究
[J].
Study on characteristics of selenium geochemical speciation in soil in Zhangjiakou Keshan disease area
[J].
Selenium in soil and endemic diseases in China
[J].DOI:10.1016/S0048-9697(01)00889-0 URL [本文引用: 1]
Selenium deficiency and toxicity in the environment [G]// Aolle Selinus. Essentials of Medical Geology
赣南地区土壤硒元素地球化学特征及其影响因素研究:以青塘—梅窑地区为例
[J].
Geochemical characteristics and influencing factors of selenium in soils of south Jiangxi Province: A typical area of Qingtang-Meiyao
[J].
黔南荔波地区耕地土壤中硒的分布特征及影响因素分析
[J].
Characteristics of soil selenium distribution of cultivated land and its influential factors in Libo of South Guizhou
[J].
贵州耕地主要元素地球化学背景值统计与分析
[J].
Statistics and analysis of geochemical background of main elements of cultivated land in Guizhou Province
[J].
Correlation between the natural levels of selenium and soil physiochemical characteristics from Jequitinhonha Vally(MG), Brazil
[J].DOI:10.1016/j.gexplo.2016.11.001 URL [本文引用: 1]
The effect of organic matter rich amendments on selenium mobility in soil
[J].DOI:10.1016/S1002-0160(13)60076-4 URL [本文引用: 1]
赣南地区水稻—根系土系统中硒含量影响因素分析
[J].
Analysis of influencing factors of selenium content in rice-root soil system in Southern Jiangxi
[J].
水稻对天然富硒土壤硒的吸收及转运
[J].
Selenium uptake and transport of rice under different Se-enriched natural soil
[J].
浔郁平原不同作物的硒富集特征及其影响因素
[J].
Selenium accumulation characteristics and its influencing factors of different crops in Xunyu Plain
[J].
大骨节病区土壤元素分布特征及其与病情的关系:以四川省塘县为例
[J].
Distribution of soil elements and its relationship with kaschin-back disease in KBD afflicted regions:A case study of Rangtang County, Sichuan Province
[J].
广西鹿寨水稻及其种植土壤中硒质量分数分布特征
[J].
Distribution characteristics of selenium content in rice and rhizosphere soil in Luzhai, Guangxi
[J].
新疆水稻主产区土壤硒含量与水稻籽粒硒含量的相关性
[J].
Correlation between soil selenium content and rice grain selenium content in Xinjiang rice production areas
[J].
水稻对硒的生物富集作用动态研究
[J].
Research on the dynamics of bioaccumulation of Se in rice
[J].
Biogeochemical cycling of selenium in Chinese environments
[J].
Assessment of selenium pollution in agriculture soil in the Xuzhou District, Northwest Jiangsu, China
[J].DOI:10.1016/S1001-0742(08)62295-0 URL [本文引用: 1]
南宁市郊周边农田土壤—农作物系统重金属元素迁移特征及其影响因素
[J].
Characteristics of transfer and their influencing factors of heavy metals soil-crop system of peri-urban agricultural soil of Nanning, South China
[J].
浙北嘉善地区土壤硒的含量、分布及其影响因素初探
[J].
Content, distribution and influencing factors of selenium in soil of Jiashan Area, Northern Zhejiang Province
[J].
浔郁平原富硒土壤成因及其影响因素研究
[J].
Studies on causes and influential factors of selnium-rich Soil in Xunyu Plain
[J].
Geochemical characteristics of soil selenium in farmland of Hainan island
[J].
土壤硒含量影响因素及富硒土地资源区划研究:以湖北恩施沙地为例
[J].
The influencing factors of selenium in soils and classifying the selenium-rich soil resources in the typical area of Enshi, Hubei
[J].
Selenium-rich dissolved organic matter determines selenium uptake in wheat grown on low-selenium arable land soil
[J].
Correlation between the nature levels of selenium and soil physicochemical characteristics from the Jequitinhonha Valley(MG), Brazil
[J].DOI:10.1016/j.gexplo.2016.11.001 URL [本文引用: 1]
铁/锰和铝氧化物吸附硒的行为研究
[J].
A study on selenium oxyanions adsorbed onto Iron/Manganese/Aluminum oxides
[J].
Environment selenium research: From microscopic to global understanding
[J].DOI:10.1021/es203434d URL [本文引用: 1]
水稻对硒的生物富集分布
[J].
Studies of the selenium bio-accumulation and distribution in rice
[J].
Selenium uptake by plants as a function of soil type, organic matter content and pH
[J].DOI:10.1007/BF00011899 URL [本文引用: 2]
硒在土壤—水稻系统中的迁移转化规律
[J].
Migration and transformation of Se in the soil-rice system
[J].
Effect of aging on the fraction distribution and bioavailability of selenium in three different soils
[J].DOI:10.1016/j.chemosphere.2015.11.011 URL [本文引用: 1]
Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review
[J].DOI:10.1016/j.geoderma.2017.02.019 URL [本文引用: 1]
武汉市侏儒—消泗地区农田系统中硒的分布特征及有效性研究
[J].
Research on selenium distribution and effectiveness in the farm system in Zhuru and Xiaosi areas, Wuhan City
[J].
外源硒对镉胁迫下菜心 Fe、Mn、 Cu、Zn 吸收与转运的影响
[J].
Effects of selenium on the uptake and transport of trace elements by cadmium-stressed flowering Chinese cabbage
[J].
Plant uptake and translocation of inorganic forms Slenium
[J].
Selenium-an antioxidative protectant in soybean during senescence
[J].
Uptake and translocation of selenium by maize (Zea mays) from its environmentaly important forms
[J].
Uptake and transport of selenite and selenite by soybean seedings of two genotypes
[J].DOI:10.1023/A:1024874529957 URL [本文引用: 1]
Selenium redistribution during aging in different Chinese soil and the dominant influential factors
[J].
DOI:S0045-6535(17)30709-9
PMID:28500973
[本文引用: 1]
To date, few works have attempted to determine the effect of soil types on Selenium aging process and the possible influential factors. In this study, the differences in Se speciation distribution and availability in 15 Chinese typical agricultural soils were investigated using spiked selenate for the entire year. Results evidenced that after one year of incubation, Se transformed from soluble fraction to Fe/Mn oxides and organic matter bound fractions in neutral or alkaline soils (pH 7.09-8.51) and from exchangeable fraction to residual fraction in acidic soils (pH 4.89-6.82). The available Se content in all soils declined rapidly at the initial stage of aging, with most of the neutral or alkaline soils reaching equilibrium after 109 d, whereas the acidic soils reached equilibrium after only 33-56 d. The available Se content in soil decreased constantly during the entire aging process in S4 (Xinjiang Gray desert soil), S12 (Anhui Yellow brown earths), and S15 (Hunan Krasnozems). Elovich model was the best model (R > 0.80) in describing the Se aging process. Estimated time for exogenous Se reaching the distribution of available Se in corresponding native soils extended from 9.7 y to 50.2 y, indicating a much longer time was required for spiked soil to reach equilibrium. Soil pH was the most significant factor directly and negatively influencing the aging process (p < 0.05), while organic matter played a dual role on Se speciation. Results could provide reference for the selection of unified equilibrium time on Se-spiked experiment.Copyright © 2017 Elsevier Ltd. All rights reserved.
/
〈 |
|
〉 |
