Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (6): 1555-1564    DOI: 10.11720/wtyht.2022.0084
  生态环境调查 本期目录 | 过刊浏览 | 高级检索 |
黑龙江双阳河流域土壤—水稻—人体系统锗的分布特征、迁移转化及影响因素
梁帅1,2,3(), 戴慧敏1,2,3(), 赵君4, 刘国栋1,2,3, 刘凯1,2,3, 翟富荣5, 韩晓萌1,2,3, 魏明辉1,2,3, 张哲寰1,2,3
1.中国地质调查局 沈阳地质调查中心,辽宁 沈阳 110034
2.自然资源部 黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
3.辽宁省黑土地演化与生态效应重点实验室,辽宁 沈阳 110034
4.中国地质调查局 西安地质调查中心,陕西 西安 710054
5.辽宁省地质矿产研究院有限责任公司,辽宁 沈阳 110034
Distribution characteristics, migration transformation and influencing factors of Ge in soil-rice system in Shuangyang River Basin, Heilongjiang Province
Liang Shuai1,2,3(), Dai Hui-Min1,2,3(), Zhao Jun4, Liu Guo-Dong1,2,3, Liu Kai1,2,3, Zhai Fu-Rong5, Han Xiao-Meng1,2,3, Wei Ming-Hui1,2,3, Zhang Zhe-Huan1,2,3
1. Shenyang Geological Survey Center, China Geological Survey, Shenyang 110034
2. Key Laboratory of Black Soil Evolution and Ecological Effects, Ministry of Natural Resources, Shenyang 110034
3. Key Laboratory of Black Soil Evolution and Ecological Effects, Liaoning Province, Shenyang 110034
4. Xi’an Geological Survey Center, China Geological Survey, Xi’an 110034
5. Liaoning Institute of Geology and Mineral Resources Co., Ltd., Shenyang 110034
全文: PDF(3681 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

土壤锗的自然禀赋、成因来源、生态环境效应及人体健康评估为黑土地生态地质研究的重要方向,开展土壤—水稻—人体系统中锗的分布特征、迁移转化及影响因素的定量研究,对黑土区富锗农产品开发和人体健康具有重要意义。基于双阳河流域1∶5万土地质量生态地球化学调查课题,获取成土母质、表层土壤、水稻籽实、根系土和人发等多介质的锗元素数据,运用GIS、SPSS软件对数据统计分析。结果表明:研究区表层土壤锗含量为(0.996~1.626)×10-6,平均值为1.326×10-6,高值区主要分布在双阳河北侧西北部和南侧中部;划定富锗、足锗耕地面积分别为70.55 km2、166.9 km2,具有开发绿色富锗、富硒农产品的较大潜力。成土母质是影响表层土壤锗含量的最主要因素,土壤类型和土地利用类型影响较小;偏酸性、有机质缺乏的土壤环境可能更有利于锗的富集。水稻籽实锗含量为(0.24~3.40)×10-6,平均值为1.59×10-6,达到中等和强烈摄取标准的样品分别占40%、60%,处于显著富锗水平。锗的生物吸收系数(Ax)与根系土锗含量呈显著负相关(p=-0.34),表明土壤低浓度的锗对水稻生长发育具有促进作用,高浓度的锗对水稻生长具有抑制或毒害作用;与根系土壤pH呈正相关(p=0.40),表明随土壤pH值的增大,水稻对锗元素的迁移转化能力逐步增强。研究区成年人发锗含量处于正常健康水平,但未成年女性头发锗含量显著超过参考值范围,需要开展更为详细的研究进行人体健康评估。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁帅
戴慧敏
赵君
刘国栋
刘凯
翟富荣
韩晓萌
魏明辉
张哲寰
关键词 迁移转化水稻根系土人发人体健康地质调查工程    
Abstract

Soil germanium natural endowment, genesis sources, ecological and environmental effects and human health assessment are important research directions in the ecological geology of black soil, and the quantitative study of germanium distribution characteristics, migration transformation and influencing factors in the soil-rice human system is of great significance to the development of germanium-rich agricultural products and human health in black soil areas. Based on the 1∶50,000 ecogeochemical survey of land quality in the Shuangyang River Basin, we obtained germanium and other elemental data from multi-media such as soil-forming parent material, top soil, rice seeds, root soil and human hair, and used GIS and SPSS software to statistically analyze the data. The results showed that the germanium content of the top soil ranged from 0.996×10-6 to 1.626×10-6, with an average value of 1.326×10-6, and the high value areas were mainly distributed in the northwest and central south of the north side of Shuangyang River; 70.55 km2 and 166.9 km2 of germanium-rich and germanium-sufficient arable land were delineated, which had a greater potential for developing green germanium-rich and selenium-rich agricultural products. Soil-forming parent material is the main factor affecting the germanium content of topsoil, and soil type and land use type have less influence; soil environment with acidic and organic matter deficiency may be more favorable for germanium enrichment. The germanium content of rice seeds ranged from 0.24×10-6 to 3.40×10-6, with a mean value of 1.59×10-6, and the samples meeting the moderate and strong uptake criteria accounted for 40% and 60%, respectively, and were at significantly germanium-rich levels. The germanium uptake coefficient (Ax)was significantly negatively correlated with the root soil germanium content (p=-0.34*), indicating that low concentrations of soil germanium have a promoting effect on rice growth and development, and high concentrations of germanium have an inhibitory or toxic effect on rice growth; it was positively correlated with the root soil pH (p=0.40), indicating that the migration and transformation ability of rice to germanium elements gradually increases with the increase of soil pH. Adult hair germanium levels were at normal healthy levels, but germanium levels in immature female hair significantly exceeded the reference range, and more detailed studies are needed for human health assessment.

Key wordsgermanium    migration transformation    rice    root soil    human hair    human health    geological survey engineering
收稿日期: 2022-02-08      修回日期: 2022-08-03      出版日期: 2022-12-20
ZTFLH:  P632  
基金资助:中国地质调查局项目“东北黑土地1∶25万土地质量地球化学调查”(121201007000161312);中国地质调查局项目“兴凯湖平原及松辽平原西部土地质量地球化学调查”(DD20190520)
通讯作者: 戴慧敏
作者简介: 梁帅(1986-),男,博士,高级工程师,从事基础地质和生态地质研究工作。Email:ls476476@163.com
引用本文:   
梁帅, 戴慧敏, 赵君, 刘国栋, 刘凯, 翟富荣, 韩晓萌, 魏明辉, 张哲寰. 黑龙江双阳河流域土壤—水稻—人体系统锗的分布特征、迁移转化及影响因素[J]. 物探与化探, 2022, 46(6): 1555-1564.
Liang Shuai, Dai Hui-Min, Zhao Jun, Liu Guo-Dong, Liu Kai, Zhai Fu-Rong, Han Xiao-Meng, Wei Ming-Hui, Zhang Zhe-Huan. Distribution characteristics, migration transformation and influencing factors of Ge in soil-rice system in Shuangyang River Basin, Heilongjiang Province. Geophysical and Geochemical Exploration, 2022, 46(6): 1555-1564.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.0084      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I6/1555
Fig.1  研究区区域地质简图
Fig.2  土壤类型及生态样品采集点位
指标 检出限/10-6 分析方法 指标 检出限/10-6 分析方法
As 0.5 AFS Zn 0.6 XRF
B 1 AES Si O 2 * 0.05 XRF
Cd 0.02 ICP-MS Al2 O 3 * 0.02 ICP-OES
Cr 0.90 ICP-MS TFe2 O 3 * 0.02 XRF
Cu 0.29 ICP-MS CaO* 0.03 XRF
Hg 0.0003 CV-AFS MgO* 0.03 XRF
Mn 4 XRF Na2O* 0.03 XRF
Mo 0.06 ICP-MS K2O* 0.02 ICP-OES
N 19 VOL Ge 0.059 ICP-MS
Ni 0.80 XRF Se 0.01 AFS
P 6 XRF pH 0.10 ISE
Pb 0.3 ICP-MS Corg* 0.03 VOL
Table 1  元素分析方法及检出限
范围 样本数 平均值/
10-6
最小值/
10-6
25%分位数/
10-6
中值/
10-6
75%分位数/
10-6
最大值/
10-6
标准差/
10-6
变异系数 pH
研究区 2746 1.326 0.996 1.264 1.332 1.396 1.626 0.104 0.08 6.96
黑龙江[4] 52 1.600 0.700 1.500 1.600 1.800 2.200 0.150
Table 2  表层土壤锗地球化学参数统计
Fig.3  土壤锗地球化学等级分布
Fig.4  富锗及足锗耕地分布
Fig.5  土壤剖面锗含量投图
土壤
类型
锗含量/10-6 标准
离差
变异
系数
样品
最小
中位
最大
算术
平均值
黑土 1.00 1.35 1.63 1.35 0.10 0.07 1116
黑钙土 1.02 1.34 1.58 1.33 0.10 0.08 491
草甸土 1.00 1.30 1.59 1.30 0.11 0.08 1186
Table3  研究区不同土壤类型锗含量特征
土壤利
用方式
锗含量/10-6 标准
偏差
变异
系数
样品
最小
中位
最大
算术
平均值
旱田 1.00 1.33 1.63 1.32 0.10 0.08 2163
水田 1.11 1.32 1.45 1.30 0.14 0.11 177
林地 1.00 1.32 1.56 1.31 0.11 0.08 198
草地 1.08 1.28 1.58 1.28 0.11 0.09 81
Table 4  研究区不同土地利用类型锗含量特征
指标 相关系数 指标 相关系数 指标 相关系数
SiO2 0.469** As 0.336** B 0.088**
Al2O3 0.564** Cd -0.023 F -0.096**
TFe2O3 0.539** Cr 0.373** I 0.196**
CaO -0.549** Cu 0.152** Mn 0.359**
MgO -0.341** Hg 0.090** Mo 0.353**
Na2O 0.166** Ni 0.407** S -0.514**
K2O 0.227** Pb 0.452** pH -0.519**
Zn 0.229** Corg -0.391**
Table 5  土壤锗含量与土壤理化指标相关性统计
指标 最小值 平均值 中位数 最大值 标准偏差 变异系数 黑龙江土壤背景值[4]
Ge 0.99 1.31 1.31 1.69 0.17 0.13 1.30
Se 0.14 0.26 0.26 0.43 0.05 0.04 0.20
SiO2 49.66 60.60 60.93 65.41 2.98 0.05 59.9
Al2O3 11.06 13.53 13.51 15.04 0.83 0.06 6.62
TFe2O3 3.60 4.67 4.64 5.84 0.48 0.10 2.94
CaO 1.63 4.09 3.35 12.06 2.16 0.53 1.54
MgO 1.06 1.48 1.51 1.85 0.14 0.09 0.78
K2O 1.90 2.37 2.39 2.60 0.15 0.06 0.99
Na2O 1.15 1.52 1.52 1.95 0.16 0.11 1.02
As 6.80 9.93 9.69 15.10 1.55 0.16 7.30
Cd 0.04 0.12 0.11 0.25 0.04 0.38 0.09
Cr 48.10 64.08 64.40 78.40 6.65 0.10 58.6
Cu 17.70 23.85 23.70 30.00 2.84 0.12 20.0
Hg 0.01 0.02 0.02 0.04 0.01 0.27 0.04
Ni 20.90 28.87 28.76 35.93 3.54 0.12 22.8
Pb 14.30 21.89 22.20 26.30 2.44 0.11 24.2
Zn 49.22 65.97 64.74 85.50 7.29 0.11 70.7
Mo 0.39 0.53 0.53 0.75 0.08 0.16 1.80
N 1733.7 2918.8 2922.5 4387.7 575.1 0.20 2215
P 764.0 1012.4 1005.0 1331.0 109.27 0.11 747
pH 6.07 7.96 8.06 8.77 0.45 0.06 6.60
Corg 1.91 3.22 3.22 4.91 0.62 0.19 2.41
Table 6  61件水稻根系土部分元素地球化学参数统计
元素 最小值 平均值 中位数 最大值 标准偏差 变异
系数
Ge 0.24 1.59 1.59 3.40 0.73 0.46
Se 0.02 0.03 0.03 0.06 0.01 0.20
Cu 0.87 1.69 1.73 3.62 0.54 0.32
Zn 6.98 12.16 11.92 19.18 1.98 0.16
Mo 0.10 0.25 0.24 0.51 0.10 0.39
Table 7  61件水稻籽实部分元素地球化学参数统计
Fig.6  水稻根系土及籽实锗含量分布对比
元素 Ge K2O CaO Na2O MgO Al2O3 SiO2 TFe2O3 S Corg pH
相关系数 -0.34 -0.05 2.49 0.03 -0.10 -0.03 -0.01 0.03 -0.07 0.11 0.40
元素 Se As Cd Cr Cu Hg Ni Pb Zn B Mo
相关系数 0.16 0.13 0.21 -0.04 -0.02 0.04 -0.08 -0.05 0.02 0.02 -0.10
Table 8  水稻锗吸收系数与根系土理化指标相关性统计
性别/年龄 样本 最小值 平均值 最大值 标准差 CV/% 参考值1[35] 参考值2[36]
女/未成年 6 1.826 5.927 9.227 2.643 44.59 0.10~4.48
女/成年 19 1.084 2.542 5.805 1.599 62.90 0.41~5.69 2.2
男/未成年 3 1.519 1.762 2.175 0.359 20.37 0.12~4.56 (0.9~3.7)
男/成年 4 2.161 3.186 4.044 0.853 26.77 0.34~5.81
Table 9  人发锗含量统计参数
[1] Murnane K J, Stallard R F. Germanium and silicon in rivers of the Orinoco drainage basin[J]. Nature, 1999, 344(19):749-752.
doi: 10.1038/344749a0
[2] Bernstein L R. Germanium geochemistry and mineralogy[J]. Geuchimica et Cosmochimica Acta, 2018, 49:2409-2422.
[3] 中国科学院地球化学研究所. 高等地球化学[M]. 北京: 科学出版社, 1998:38.
[3] Institute of Geochemistry, Chinese Academy of Sciences. Advanced geochemistry[M]. Beijing: Science Press, 1998: 38.
[4] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
[4] China Environmental Monitoring Station. Background value of soil elements in China[M]. Beijing: China Environmental Science Press, 1990.
[5] 鄢明才, 顾铁新, 迟清华, 等. 中国土壤化学元素丰度与表生地球化学特征[J]. 物探与化探, 1997, 21(3):161-167.
[5] Yan M C, Gu T X, Chi Q H, et al. Abundance of chemical elements of soils in china and supergenesis geochemistry characteristics[J]. Geophysical and Geochemical Exploration, 1997, 21(3): 161-167.
[6] 杨利, 黄仁录. 锗与人体健康[J]. 微量元素与健康研究, 2005, 22(3):60-61.
[6] Yang L, Huang R L. Germanium and human health[J]. Research on Trace Elements and Health, 2005, 22(3): 60-61.
[7] 李景岩. 有机锗与人体健康[J]. 现代预防医学, 2007, 34(13):2465-2467.
[7] Li J Y. Organic germanium and human health[J]. Modern Preventive Medicine, 2007, 34(13): 2465-2467.
[8] 赵君, 饶竹, 王鹏, 等. 黑龙江讷河市富锗土壤地球化学特征及影响因素浅析[J]. 岩矿测试, 2022, 41(4):642-651.
[8] Zhao J, Rao Z, Wang P, et al. Geochemical characteristics and influencing factors of germanium-enriched soils in Nehe City, Heilongjiang Province[J]. Rock and Mineral Analysis, 2022, 41(4) :642-651.
[9] 夏伟, 段碧辉, 王天一, 等. 恩施州咸丰县土壤—水稻系统锗元素迁移转化及影响因素[J]. 西南农业学报, 2021, 34(12):2748-2756.
[9] Xia W, Duan B H, Wang T Y, et al. Germanium transfer and its influencing factors in soil-rice system in Xianfeng County,Enshi Prefecture[J]. Southwest Agricultural Journal, 2021, 34(12):2748-2756.
[10] 刘道荣, 周漪, 侯建国, 等. 大田生产条件下锗在土壤-水稻系统中的迁移累积[J]. 中国土壤与肥料, 2020(3):133-137.
[10] Liu D R, Zhou Y, Hou J G, et al. Translocation and accumulation of germanium in soil-rice system under field conditions[J]. China Soil and Fertilizer, 2020(3):133-137.
[11] 余飞, 贾中民, 李武斌, 等. 锗在土壤—水稻系统的迁移累积及其影响因素[J]. 三峡生态环境监测, 2018, 3(1):66-74.
[11] Yu F, Jia Z M, Li W B, et al. Translocation and accumulation of germanium in paddy soil-rice plant system[J]. Three Gorges Ecological Environment Monitoring, 2018, 3(1): 66-74.
[12] 段轶仁, 杨忠芳, 杨琼, 等. 广西北部湾地区土壤锗分布特征及其影响因素及其生态环境评价[J]. 中国地质, 2020, 47(6):1826-1837.
[12] Duan Y R, Yang Z F, Yang Q, et al. The distribution, influencing factors and ecological environment evaluation of soil germanium in Beibu Gulf of Guangxi Zhuang Autonomous Region[J]. Geology in China, 2020, 47(6):1826-1837.
[13] 梁帅, 朱建新, 戴慧敏, 等. 黑龙江拜泉地区硒元素在土壤原植物系统中的迁移富集规律[J]. 地质与资源, 2021, 30(4):456-465.
[13] Liang S, Zhu J X, Dai H M, et al. Migration and enrichment of selenium in soil-plant system in baiquan area,heilongjiang province[J]. Geology and Resources, 2021, 30(4):456-465.
[14] 汤彦辉, 程岩, 孙玉龙, 等. 黑龙江省拜泉县耕地地力评价[M]. 北京: 中国农业科学技术出版社, 2016.
[14] Tang Y H, Cheng Y, Sun Y L, et al. Evaluation of cultivated land in Baiquan County, Heilongjiang Province[M]. Beijing: China Agricultural Science and Technology Press, 2016.
[15] 李光辉, 崔玉军, 张立, 等. 富锗土壤评价技术要求[M]. 哈尔滨: 黑龙江省市场监督管理局, 2019.
[15] Li G H, Cui Y J, Zhang L, et al. Technical requirements for germanium-rich soil evaluation[M]. Harbin: Heilongjiang Provincial Administration for Market Regulation, 2019.
[16] 余飞, 张永文, 王宇, 等. 重庆典型农业区富锗土壤分布特征及影响因素[J]. 地质与资源, 2021, 30(5):609-616.
[16] Yu F, Zhang Y W, Wang Y, et al. Distribution characteristics and influencing factors of germanium-rich soil in typical agricultural area of chongqing municipality[J]. Geology and Resources, 2021, 30(5):609-616.
[17] 刘道荣. 浙江常山县表层土壤锗地球化学特征及影响因素[J]. 现代地质, 2020, 34(1):97-104.
[17] Liu D R. Geochemical characteristics and influencing factors of germanium in surface soil of Changshan County, Zhejiang Province[J]. Modern Geology, 2020, 34(1): 97-104.
[18] 游桂芝, 鲍大忠, 李丕鹏. 贵州安龙县耕地土壤富锗含量特征及成因探讨[J]. 贵州大学学报:自然科学版, 2020, 37(5):35-39.
[18] You G Z, Bao D Z, Li P P. Germanium content characteristics and cause of germanium-rich soil in Anlong County,Guizhou Province[J]. Journal of Guizhou University:Natural Science Edition, 2020, 37(5): 35-39.
[19] 夏伟, 段碧辉, 王天一, 等. 恩施州咸丰县土壤—水稻系统锗元素迁移转化及影响因素[J]. 西南农业学报, 2021, 34(12):2748-2756.
[19] Xia W, Duan B H, Wang T Y, et al. Germanium transfer and its influencing factors in soil-rice system in Xianfeng County,Enshi Prefecture[J]. Southwest Agricultural Journal, 2021, 34(12): 2748-2756.
[20] Adriano D C, Chino M. Biogeochemical aspects of lead, germanium and tin[J]. Main Group Metal Chemistry, 1994, 17:1-4.
doi: 10.1515/MGMC.1994.17.1-4.1
[21] 代杰瑞, 庞绪贵, 喻超, 等. 山东省东部地区土壤地球化学特征及污染评价[J]. 中国地质, 2011, 38(5):1387-1395.
[21] Dai J R, Pang X G, Yu C, et al. Geochemical features and contamination assessment of soil elements in east Shandong Province[J]. China Geology, 2011, 38(5): 1387-1395.
[22] Kurtz A C, Derry L A, Chadwick O A. Germanium-silicon fractionation in the weathering environment[J]. Geochimica et Cosmochimica Acta, 2002, 66(9):1525-1537.
doi: 10.1016/S0016-7037(01)00869-9
[23] Lugolobi F, Kurtz A C, Derry L A. Germanium-silicon fractionation in a tropical, granitic weathering environment[J]. Geochimica et Cosmochimica Acta, 2010, 4(74): 1294-1308.
[24] Scribner A M, Kurtz A C, Chadwick O A. Germanium sequestration by soil: Targeting the roles of secondary clays and Fe-oxyhydroxides[J]. Earth & Planetary Science Letters, 2006,3- 4(243): 760-770.
[25] Pokrovsky O S, Galy A, Schott J, et al. Germanium isotope fractionation during Ge adsorption on goethiteand its coprecipitation with Fe oxy(hydr)oxides[J]. Geochimica et Cosmochimica Acta, 2014, 5(131): 138-149.
[26] 李明堂. 锗在土壤—水稻体系内迁移和积累规律的研究[D]. 长春: 吉林农业大学, 2002.
[26] Li M T. Study on the migration and accumulation of germanium in soil-rice system[D]. Changchun: Jilin Agricultural University, 2002.
[27] Yang J T, Jwang J F, Liao X Y, et al. Chain modeling for the biogeochemical nexus of cadmium in soil-rice-human health system[J]. Environment International, 2022, 167:107424-407433.
doi: 10.1016/j.envint.2022.107424
[28] 李明堂, 张月, 赵晓松. 锗在土壤—水稻系统内的迁移和积累规律[J]. 农业环境科学学报, 2007, 26(1):126-129.
[28] Li M T, Zhang Y, Zhao X S. Migration and accumulation of germanium in soil-rice system[J]. Journal of Agricultural and Environmental Sciences, 2007, 26(1): 126-129.
[29] Kiyoshi T, Ko-Ling Y. Soil science and plant nutrition[J]. Soil Science and Plant Nutrition, 1972, 18(5):173-178.
doi: 10.1080/00380768.1972.10432501
[30] Oliver W, Balázs S, Christin M, et al. Germanium in the soil-plant system:A review[J]. Environmental Science and Pollution Research, 2018, 25(32): 31938-31956.
doi: 10.1007/s11356-018-3172-y
[31] Philippe N, Anna L, Clemens R, et al. Gemas:Source, distribution patterns and geochemical behavior of Ge in agricultural and grazing land soils at European Continental Scale[J]. Applied Geochemistry, 2016, 72:113-124.
doi: 10.1016/j.apgeochem.2016.07.004
[32] 李桂珠, 赵丽丽. 金属锗在水稻体内的植物化研究[J]. 安徽农业科学, 2008, 36(22):9434-9435.
[32] Li G Z, Zhao L L. Phytochemical study of metal germanium in rice[J]. Anhui Agricultural Sciences, 2008, 36(22): 9434-9435.
[33] Fan B L, Tang M L, Yao L Y, et al. Germanium fractions in typical paddy soil and its interaction with humic substances[J]. Environmental Science and Pollution Research, 2020, 28:9670-9681.
doi: 10.1007/s11356-020-11482-9
[34] 李青仁, 李会, 岳春月, 等. 微量元素锗与人体健康[J]. 世界元素医学, 2008, 15(3):21-23.
[34] Li Q R, Li H, Yue C Y, et al. Trace element germanium and human health[J]. World Elemental Medicine, 2008, 15(3): 21-23.
[35] T/GDWJ 003—2020人体头发中38种微量元素健康评价阈值[S]. 广东省卫生经济学会, 2020.
[35] T/GDWJ 003—2020 Thresholds for health evaluation of 38 trace elements in human hair[S]. Guangdong Health Economics Association, 2020.
[36] 廖昌园, 王春红, 陈彬. 营养与健康[M]. 北京: 新华出版社, 2003:104.
[36] Liao C Y, Wang C H, Chen B. Nutrition and health[M]. Beijing: Xinhua Press, 2003: 104.
[1] 王惠艳, 彭敏, 马宏宏, 张富贵. 贵州典型重金属高背景区耕地土壤重金属生态风险评价[J]. 物探与化探, 2023, 47(4): 1109-1117.
[2] 周文龙, 杨志忠, 张涛, 忙是材, 杨正坤. 黔南荔波县水稻—根系土系统中硒含量影响因素分析[J]. 物探与化探, 2022, 46(2): 502-510.
[3] 史朝洋, 高维强, 张利明, 张林, 冯旭亮, 何滔, 郑有伟. 唐昭陵韦贵妃墓综合地球物理探测研究[J]. 物探与化探, 2021, 45(6): 1617-1624.
[4] 刘道荣, 周漪. 浙西水田土壤镉形态与有效性研究[J]. 物探与化探, 2020, 44(5): 1239-1244.
[5] 潘永敏, 徐玉琳, 华明, 廖启林, 倪俊, 高立, 周钢军. 镇江谏壁热电厂煤灰库对周边土壤硒的环境影响[J]. 物探与化探, 2017, 41(1): 177-182.
[6] 潘永敏, 廖启林, 华明, 高梅, 朱伯万, 金洋. 江苏南部典型地区耕作层土壤及农作物中重金属评价[J]. 物探与化探, 2014, 38(2): 318-324.
[7] 尹宗义, 王会锋, 任蕊, 彭立华, 晁旭, 卢婷, 王明霞. 陕西省石头河一带土壤及植物富硒特征[J]. 物探与化探, 2014, 38(2): 349-353.
[8] 魏然, 侯青叶, 杨忠芳, 尹国胜, 衷存堤, 邓国辉, 马逸麟. 江西省鄱阳湖流域根系土硒形态分析及其迁移富集规律[J]. 物探与化探, 2012, 36(1): 109-113.
[9] 陶春军, 周涛发, 李湘凌, 袁峰, 陈兴仁, 陈永宁, 贾十军, 陈富荣. 施磷对土壤中汞、铅吸附特性的影响 [J]. 物探与化探, 2010, 34(5): 655-658.
[10] 何燕, 周国华, 王学求. 从微量元素与人体健康关系得到的启示[J]. 物探与化探, 2008, 32(1): 70-74.
[11] 郦逸根, 徐静, 李琰, 宋明义, 翁祖山. 浙江富硒土壤中硒赋存形态特征[J]. 物探与化探, 2007, 31(2): 95-98,109.
[12] 郦逸根, 董岩翔, 郑洁, 解怀生, 宋明义. 地质因素影响下的硒在土壤—水稻系统中的迁移转化[J]. 物探与化探, 2007, 31(1): 77-80.
[13] 蒋建强. 环境地球化学与人体健康及农业生产的关系[J]. 物探与化探, 2004, 28(4): 330-332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com