Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (1): 238-249    DOI: 10.11720/wtyht.2022.1317
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
四川邻水县华蓥山—西槽土壤Cu地球化学特征与生态健康
赵筱媛1(), 杨忠芳1(), 程惠怡1, 马旭东1, 王珏1, 李志坤1, 王琛1, 李明辉2, 雷风华2
1.中国地质大学(北京) 地球科学与资源学院,北京 100083
2.中国地质调查局 成都地质调查中心,四川 成都 610081
Geochemical characteristics and ecological health-related ranges of Copper in soil in Huaying Mountain-Xicao in Linshui County, Sichuan Province
ZHAO Xiao-Yuan1(), YANG Zhong-Fang1(), CHENG Hui-Yi1, MA Xu-Dong1, WANG Jue1, LI Zhi-Kun1, WANG Chen1, LI Ming-Hui2, LEI Feng-Hua2
1. School of Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China
2. Chengdu Center,China Geological Survey,Chengdu 610081,China
全文: PDF(5910 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

铜(Cu)是人体所必需的微量元素,目前我国还没有农作物Cu含量的推荐值,更缺少开发富Cu土地资源的土壤Cu含量标准。本文以四川省邻水县华蓥山—西槽耕地区为研究区,根据1∶5万土地质量地球化学调查获取的表层土壤、农作物及根系土中Cu含量数据调查结果,研究了土壤与农作物中Cu的含量及分布特征,分析了玉米籽实Cu生物富集系数(BAF)的影响因素,构建了玉米籽实Cu的BAF预测模型,提出了开发富Cu玉米和富Cu土地资源的Cu含量最佳赋值范围。研究结果显示:①研究区表层土壤Cu含量范围为(3.33~173)×10-6,平均值、中位值分别为26.85×10-6、25.60×10-6。土壤Cu高值区主要分布在邻水县华蓥山玄武岩、碳酸盐岩与炭质页岩为成土母岩的地区,土壤Cu低值区分布在西槽侏罗系砂页岩为成土母岩的地区。②研究区玉米籽实Cu含量范围为(0.80~2.71)×10-6,平均值为1.76×10-6,中位值为1.82×10-6。③为保证人体摄入Cu安全,研究区玉米籽实中Cu含量最佳范围为(0.756~10.080)×10-6,土壤中Cu含量最佳范围为(12.67~169.00)×10-6

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵筱媛
杨忠芳
程惠怡
马旭东
王珏
李志坤
王琛
李明辉
雷风华
关键词 玉米籽实Cu预测模型四川邻水县生态健康土壤地球化学膳食营养    
Abstract

Copper (Cu) is an essential trace element for the human body. However, there is no recommended value for Cu content in crops in China, and there is no standardon Cu content in soil for developing Cu-rich land resources. This paper takes the Huaying Mountain-Xicao cultivated land areas in Linshui County, Sichuan Province as the study area. Based on the survey results of the Cu contents in surface soil, crops, and root soil obtained from the 1∶50 000 land quality geochemical survey, this study investigated the contents and distribution of Cu in soil and crops and analyzed the influencing factors of the biological enrichment coefficient (BAF) of Cu in corn seeds. Moreover, it established a BAF prediction model of Cu in corn seeds and proposed the optimal ranges of Cu contents for developing Cu-rich corn and land resources. The study results are as follows. The Cu content in the surface soil of the study area ranges from 3.33×10-6 to 173×10-6, with an average and a median of 26.85×10-6 and 25.60×10-6, respectively. The soil with high Cu content is mainly distributed in the areas in Huaying Mountain in Linshui County where basalts, carbonate rocks, and carbonaceous shales are soil-forming rocks. In contrast, the soil with low Cu content is distributed in areas in Xicao where Jurassic sandshaleserves as soil-forming rocks. The Cu content in corn seeds in the study area ranges from 0.80×10-6 to 2.71×10-6, with an average and a median of 1.76×10-6 and 1.82×10-6 respectively. To ensure the safety of human beings in terms of Cu intake, the optimal Cu contents in corn seeds and soil in the study area should be 0.756×10-6~10.080×10-6 and 12.67×10-6~169.00×10-6, respectively.

Key wordsCu content in corn seeds    prediction model    Linshui County,Sichuan Province    ecological health    soil geochemistry    dietary nutrition
收稿日期: 2021-05-27      修回日期: 2021-07-19      出版日期: 2022-02-20
ZTFLH:  P632  
基金资助:中国地质调查局成都地质调查中心“四川广安综合资源环境地质调查项目”子项目“四川广安耕地区土地质量地球化学调查”(DD20190524-06)
通讯作者: 杨忠芳
作者简介: 赵筱媛(2000-),女,在读本科生,地球化学专业,主要从事环境地球化学研究工作。Email: zhaoxiaoyuan@cugb.edu.cn
引用本文:   
赵筱媛, 杨忠芳, 程惠怡, 马旭东, 王珏, 李志坤, 王琛, 李明辉, 雷风华. 四川邻水县华蓥山—西槽土壤Cu地球化学特征与生态健康[J]. 物探与化探, 2022, 46(1): 238-249.
ZHAO Xiao-Yuan, YANG Zhong-Fang, CHENG Hui-Yi, MA Xu-Dong, WANG Jue, LI Zhi-Kun, WANG Chen, LI Ming-Hui, LEI Feng-Hua. Geochemical characteristics and ecological health-related ranges of Copper in soil in Huaying Mountain-Xicao in Linshui County, Sichuan Province. Geophysical and Geochemical Exploration, 2022, 46(1): 238-249.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1317      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I1/238
Fig.1  研究区位置
Fig.2  邻水县地质图
Fig.3  研究区样品分布
样品类型 元素 处理方法 分析方法 项目要求检出限/10-6 检出限/10-6
表层土 Cu HNO3-HF-HClO4溶样 ICP-MS 1 1
农作物 Cu 微波消解法 ICP-MS 1 0.005
根系土 Al2O3 粉末压片法 XRF 0.05* 0.05*
SiO2 粉末压片法 XRF 0.1* 0.05*
TFe2O3 粉末压片法 XRF 0.05* 0.05*
Corg 重铬酸钾氧化 VOL 0.1* 0.05*
Cu HCl - HNO3-HF-HClO4溶样 ICP-AES 1 0.8
Table 1  样品分析方法配套方案及检出限
含量范围 准确度(ΔlgC) 精密度(RSD)/%
检出限3倍以内 ≤±0.10 ≤17
检出限3倍以上 ≤±0.05 ≤10
1%~5% ≤±0.04 ≤8
>5% ≤±0.02 ≤3
Table 2  土壤样品分析方法准确度和精密度要求
样品数 最大值 最小值 中位值 平均值 全国值[21] 四川值[22]
3306 173 3.33 25.6 26.85 22.6 29.7
Table 3  研究区表层土壤Cu含量统计
Fig.4  研究区表层土壤Cu含量地球化学分布
指标 砂页岩n=3039 石灰岩n=200 炭质页岩n=43 玄武岩n=24
中位值 平均值 中位值 平均值 中位值 平均值 中位值 平均值
w(Cu)/10-6 25.3 24.53 38.95 47.49 63.7 68.03 79.3 74.44
pH 5.25 6.64 5.17 5.73
Table 4  不同成土母质土壤Cu、pH参数统计
用地类型 pH≤5.5 5.5<pH≤6.5 6.5<pH≤7.5 pH>7.5
果园 150 150 200 200
其他 50 50 100 100
Table 5  GB 15618—2018农用地土壤Cu生态风险筛选值
Fig.5  玉米籽实与根系土Cu含量散点图
土壤理化性质 Corg SiO2/Al2O3 TFe2O3
生物富集系数(BAF) -0.472** 0.437* -0.801**
Table 6  富集系数(BAF)与土壤元素皮尔森系数(n=59)
Fig.6  BAF实际值与预测值散点图
食品种类 城市 农村 合计
粮谷薯类 246.67 259.72 254.5
蔬菜类 295.96 245.53 265.67
水果类 28.09 8.94 16.58
畜禽肉类 139.84 134.08 136.38
鱼虾水产类 9.68 5.74 7.31
蛋类 26.95 10.52 17.08
奶及其制品类 59.64 9.97 29.80
大豆及其制品类 14.64 5.40 9.08
食用油 43.65 51.59 48.42
食盐 8.17 7.56 7.80
Table 7  四川省居民各类食物平均摄入量
Fig.7  BAF与SiO2/Al2O3含量散点图
Fig.8  BAF与Corg含量散点图
Fig.9  BAF与TFe2O3含量散点图
[1] Bonnie R S, Marc S, Daniel K, et al. Copper and human health: Biochemistry, genetics, and strategies for modeling dose-response relationships[J]. Journal of Toxicology and Environmental Health, Part B, 2007,10(3):157-222.
doi: 10.1080/10937400600755911
[2] McBride M B. Trace metals and sulfur in soils and forage of a chronic wasting disease locus[J]. Environmental Chemistry, 2007,4(2):134-139.
doi: 10.1071/EN06066
[3] 郭小燕, 杨玉霞. 环境地球化学与人体健康的关系[J]. 环境与发展, 2012,24(2):210-213.
[3] Guo X Y, Yang Y X. Environmental geochemistry in relation to human health[J]. Environment and Development, 2012,24(2):210-213.
[4] 马国瑞, 石伟勇. 农作物营养失调症原色图谱[M]. 北京: 中国农业出版社, 2002:76-77.
[4] Ma G R, Shi W Y. Primary color map of crop malnutrition disease[M]. Beijing: China Agriculture Press, 2002: 76-77.
[5] Brian J A. Heavy metals in soils:Trace metals and metalloids in soils and their bioavailability[M]. Third Edition. Berlin: Springer Netherlands, 2013:100-103.
[6] Mclaren R G, Crawford D V. Studies on soil copper I. The fractionation of copper in soils[J]. European Journal of Soil Science, 2006,24(2):172-181.
[7] 孔维屏, 武玫玲. 土壤铁锰氧化物对铜离子富集作用的初步研究[J]. 土壤, 1992,24(1):41-42.
[7] Kong W P, Wu M L. Preliminary study on the enrichment of copper ions by iron and manganese oxides in soil[J]. Soils, 1992,24(1):41-42.
[8] 刘斌, 黄玉溢, 陈桂芬. 广西耕地土壤铜的含量及其影响因素[J]. 南方农业学报, 2006,37(6):91-93.
[8] Liu B, Huang Y Y, Chen G F. Study on Cu content in cultivated soils and its influence factors in Guangxi[J]. Journal of Southern Agriculture, 2006,37(6):91-93.
[9] Sauvé S, McBride M B, Norvell W A, et al. Copper solubility and speciation of in situ contaminated soils:Effects of copper level, pH and organic matter[J]. Water Air & Soil Pollution, 1997,100(1-2):133-149.
[10] Degryse F, Smolders E, Parker D R. Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils:Concepts, methodologies, prediction and applications-a review[J]. Cheminform, 2010,41(4):590-612.
[11] Du L G, Vanthuyne D R J, Vandecasteele B, et al. Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil[J]. Environmental Pollution, 2007,147(3):615-625.
doi: 10.1016/j.envpol.2006.10.004
[12] Weber F A, Voegelin A, Kretzschmar R. Multi-metal contaminant dynamics in temporarily flooded soil under sulfate limitation[J]. Geochimica et Cosmochimica Acta, 2009,73(19):5513-5527.
doi: 10.1016/j.gca.2009.06.011
[13] Kelderman P, Osman A A. Effect of redox potential on heavy metal binding forms in polluted canal sediments in Delft (The Netherlands)[J]. Water Research, 2007,41(18):4251-4261.
pmid: 17640704
[14] 蒋廷惠, 胡蔼堂, 秦怀英. 土壤中锌, 铜, 铁, 锰的形态与有效性的关系[J]. 土壤通报, 1989,5(12):228-231.
[14] Jiang T H, Hu A T, Qin H Y. Relationship between the forms and availability of Zn, Cu, Fe and Mn in soil[J]. Chinese Journal of Soil Science, 1989,5(12):228-231.
[15] 孔维屏. 土壤中铜的形态及转化的研究概况[J]. 土壤学进展, 1986(6):15-22.
[15] Kong W P. Study on the form and transformation of Cu in soil[J]. Progress in Soil Science, 1986(6):15-22.
[16] 隆茜, 张经. 陆架区沉积物中重金属研究的基本方法及其应用[J]. 海洋湖沼通报, 2002(3):25-35.
[16] Long Q, Zhang J. The method of heavy metals study in shelf sediments and it's application[J]. Transactions of Oceanology and Limnology, 2002(3):25-35.
[17] 郭晓方, 卫泽斌, 丘锦荣, 等. 玉米对重金属累积与转运的品种间差异[J]. 生态与农村环境学报, 2010,26(4):367-371.
[17] Guo X F, Wei Z B, Qiu J R, et al. Differences between corn cultivars in accumulation and translocation of heavy metals[J]. Journal of Ecology and Rural Environment, 2010,26(4):367-371.
[18] 常玉虎, 赵元艺, 曹冲, 等. 德兴铜矿区主要流域内环境介质中重金属含量特征与健康风险评价[J]. 地质学报, 2015,89(5):889-908.
[18] Chang Y H, Zhao Y Y, Cao C, et al. Characteristics of heavy metals content and assessment of health risk in different environment media in the Dexing copper mining area[J]. Acta Geologica Sinica, 2015,89(5):889-908.
[19] Hou S N, Zheng N, Tang L, et al. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018[J]. Environment International, 2019,128:430-437.
doi: 10.1016/j.envint.2019.04.046
[20] 杨刚, 沈飞, 钟贵江, 等. 西南山地铅锌矿区耕地土壤和谷类产品重金属含量及健康风险评价[J]. 环境科学学报, 2011,31(9):2014-2021.
[20] Yang G, Shen F, Zhong G J, et al. Concentration and health risk of heavy metals in crops and soils in a zinc-lead mining area in southwest mountainous regions[J]. Acta Scientiae Circumstantiae, 2011,31(9):2014-2021.
[21] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990: 86-87.
[21] China National Environmental Monitoring Centre. Background values of soil elements in China[M]. Beijing: China Environmental Science Press, 1990:86-87.
[22] 曾昭华. 四川省土壤元素含量和生态农业地质研究[J]. 四川地质学报, 2005,25(1):44-50.
[22] Zeng Z H. A study of elemental contents in soil and ecologic and agricultural geology in Sichuan[J]. Acta Geologica Sichuan, 2005,25(1):44-50.
[23] 生态环境部, 国家市场监督管理总局. GB 15618—2018 土地环境质量农用地污染风险管控标准[S]. 北京: 中国标准出版社, 2018:1-4.
[23] Ministry of ecological environment, State Administration for Market Regulation. GB 15618—2018 Soil environmental quality-risk control standard for soil contamination of agricultural land [S]. Beijing: China Standards Press, 2018:1-4.
[24] 中华人民共和国农业部. NY 861—2004 粮食(含谷物、豆类、薯类)及制品中铅、铬、镉、汞、硒、砷、铜、锌等八种元素限量[S]. 北京: 中国标准出版社, 2005:1-4.
[24] Ministry of Agriculture of the People's Republic of China. NY 861—2004 Limits of eight elements in cereals, legume, tubes and it products[S]. Beijing: China Standards Press, 2005:1-4.
[25] Chopra A K, Pathak C. Accumulation of heavy metals in the vegetables grown in waste water irrigated areas of Dehradun, India with reference to human health risk[J]. Environmental Monitoring & Assessment, 2015,187(7):1-8.
[26] 刘敏, 颜玲, 刘蒙蒙, 等. 四川省居民膳食营养状况分析[J]. 预防医学情报杂志, 2018,34(3):357-361.
[26] Liu M, Yan L, Liu M M, et al. The dietary status of residents in Sichuan province[J]. Journal of Preventive Medicine Information, 2018,34(3):357-361.
[27] 中华人民共和国国家卫生和计划生育委员会. WS/T578.3—2017 中国居民膳食营养素参考摄入量第3部分: 微量元素[S]. 北京: 中国标准出版社, 2017: 1-4.
[27] National Health and Family Planning Commission of the People's Republic of China. WS/T 578.3—2017 Chinese dietary reference intake-Part 3: Trace element[S]. Beijing: China Standards Press, 2017:1-4.
[28] 南京大学. 土壤学基础与土壤地理学[M]. 北京: 人民教育出版社, 1980: 28-30.
[28] Nanjing University. Fundamentals of soil science and soil geography[M]. Beijing: People's Education Press, 1980:28-30.
[29] 尚爱安, 刘玉荣, 梁重山. 土壤中重金属的生物有效性研究进展[J]. 土壤, 2000,32(6):294-300.
[29] Shang A A, Liu Y R, Liang Z S. Research progress on bioavailability of heavy metals in soil[J]. Soils, 2000,32(6):294-300.
[30] 冯志刚, 王世杰, 孙承兴. 引起红土表层硅铝比值增大原因的可能性探讨[J]. 地球与环境, 2002,30(4):7-14.
[30] Feng Z G, Wang S J, Sun C X. Discussion on possible causes of increases in Si/Al ratioin surface layers of some lateritic profiles[J]. Geology Geochemistry, 2002,30(4):7-14.
[31] Geering H R, Hodgson J F. Micronutrient cation complexes in soil solution: III. characterization of soil solution ligands and their complexes with Zn2+ and Cu2+[J]. Soil Science Society of America Journal, 1969,33(1):54-59.
doi: 10.2136/sssaj1969.03615995003300010018x
[32] Nielsen N E. The effect of plants on the copper concentration in the soil solution[J]. Plant & Soil, 1976,45(3):679-687.
[33] 袁可能. 土壤化学[M]. 北京: 农业出版社, 1990: 117-119.
[33] Yuan K N. Soil chemistry[M]. Beijing: Agriculture Press, 1990:117-119.
[34] 崔妍, 丁永生, 公维民, 等. 土壤中重金属化学形态与植物吸收的关系[J]. 大连海事大学学报, 2005,31(2):59-63.
[34] Cui Y, Ding Y S, Gong W M, et al. Study on the correlation between the chemical forms ofthe heavy metals in soil and the metal uptake by plant[J]. Journal of Dalian Maritime University, 2005,31(2):59-63.
[35] Apul D, Gardner K, Eighmy T T, et al. Simultaneous application of dissolution/precipitation and surface complexation/surface precipitation modeling to contaminantleaching[J]. Environmental Science & Technology, 2005,39(15):5736-5741.
doi: 10.1021/es0486521
[36] McBride M B, 葛旦之. 土壤固相和液相中铜的形态和分布[J]. 土壤学进展, 1987(1):50-55.
[36] McBride M B, Ge D Z. Morphology and distribution of Cu in solid and liquid phases of soil[J]. Progress in Soil Science, 1987(1):50-55.
[37] 王懿铮, 杨忠芳, 刘旭, 等. 广西贵港市覃塘区土壤Cu地球化学特征与生态健康研究[J/OL]. 中国地质:1-18[2021-04-22]. http://kns.cnki.net/kcms/detail/11.1167.P.20200529.1230.002.html
[37] Wang Y Z, Yang Z F, Liu X, et al. Geochemical characteristics of Copper in soil and ecological health research in Qintang district of Guigang City in Guangxi[J]. Geology in China:1-18[2021-04-22]. http://kns.cnki.net/kcms/detail/11.1167.P.20200529.1230.002.html
[38] 汪雅谷, 张四荣. 无污染蔬菜生产的理论与实践[M]. 北京: 中国农业出版社, 2001: 290-291.
[38] Wang Y G, Zhang S R. Theory and practice of pollution-free vegetable production[M]. Beijing: China Agriculture Press, 2001:290-291.
[39] 祖艳群, 李元, 陈海燕, 等. 蔬菜中铅镉铜锌含量的影响因素研究[J]. 农业环境科学学报, 2003,22(3):289-292.
[39] Zu Y Q, Li Y, Chen H Y, et al. Research on factors influencing concentrations of Pb, Cd, Cu and Zn in vegetables[J]. Journal of Agro-Environment Science, 2003,22(3):289-292.
[40] 王新, 吴燕玉. 不同作物对重金属复合污染物吸收特性的研究[J]. 农业环境保护, 1998,17(5):193-195.
[40] Wang X, Wu Y Y. Study on the absorption characteristics of heavy metal compound pollutants by different crop[J]. Agro-Environmental Protection, 1998,17(5):193-195.
[41] 康均行, 吴先萍. 四川省居民营养与健康现状报告——2002年四川省居民营养与健康状况调查[M]. 成都: 四川大学出版社, 2006: 1-2.
[41] Kang J X, Wu X P. Report on nutrition and health status of residents in Sichuan province-survey on nutrition and health status of residents in Sichuan province in 2002[M]. Chengdu: Sichuan University Press, 2006:1-2.
[42] 刘建国. 水稻品种对土壤重金属镉铅吸收分配的差异及其机理[D]. 扬州:扬州大学, 2004: 1-12.
[42] Liu J G. Variations among rice cultivars in the uptake and translocation of cadmium and lead from soil,and the mechanisms[D]. Yangzhou:Yangzhou University, 2004:1-12.
[43] 邵云, 姜丽娜, 李向力, 等. 五种重金属在小麦植株不同器官中的分布特征[J]. 生态环境, 2005,14(2):204-207.
[43] Shao Y, Jiang L N, Li X L, et al. Distribution of five heavy metals in different organs of wheat[J]. Ecology and Environment, 2005,14(2):204-207.
[44] 吴传星. 不同玉米品种对重金属吸收累积特性研究[D]. 成都:四川农业大学, 2010: 50-51.
[44] Wu C X. Study on characteristics of heavy metal absorption and accumulation in the different maize varieties[D]. Chengdu:Sichuan Agricultural University, 2010:50-51.
[1] 马一奇, 和成忠, 姜昕, 杨朝磊. 热带雨林区地质填图方法技术实践[J]. 物探与化探, 2022, 46(2): 352-361.
[2] 史琪, 赵延朋, 迟占东, 葛华, 康铁锁, 李发兴, 魏翔宇, 卢见昆, 杨人毅. 老挝川圹省约俄锡多金属矿区沟系土壤地球化学特征及成矿预测[J]. 物探与化探, 2021, 45(4): 824-834.
[3] 郭建宏, 张占松, 张超谟, 陈芷若, 张鹏浩, 汤潇, 秦瑞宝, 余杰. 基于灰色系统与测井方法的煤层气含量预测及应用[J]. 物探与化探, 2020, 44(5): 1190-1200.
[4] 陆伟彦, 杜明龙, 纪山青, 刘川, 孟祥元, 邢仕, 刘子江. 河北省卢龙县亮甲峪测区地球化学异常及找矿意义[J]. 物探与化探, 2020, 44(4): 719-726.
[5] 何旺, 罗先熔, 欧阳菲, 刘攀峰, 苏艺怀, 黄文斌, 王东, 游军, 张小明. 地电化学在陕西略阳县何家垭地区寻找隐伏铜镍矿的研究[J]. 物探与化探, 2020, 44(3): 523-532.
[6] 王卫星, 曹淑萍, 李攻科. 天津盘山磨盘柿子品质分析及其产地土壤地球化学特征[J]. 物探与化探, 2019, 43(5): 1131-1137.
[7] 李凯, 万欢. 江西乐平涌山地区土壤异常特征及找矿前景[J]. 物探与化探, 2019, 43(3): 494-501.
[8] 肖瑞卿, 赵春, 付小方, 郝雪峰, 袁蔺平, 潘蒙, 唐屹, 王伟. 四川甘孜甲基卡锂矿地质—地球化学特征和找矿标志[J]. 物探与化探, 2018, 42(6): 1156-1165.
[9] 蒋永臻. 土壤地球化学测量在赞比亚Mwombezhi地区铜钴矿预查中的应用[J]. 物探与化探, 2017, 41(5): 821-825.
[10] 杜佰松, 申俊峰, 秦玉良, 徐立为, 聂潇, 赵玉, 牛刚, 欧阳尔彪. 甘肃沃尔给楔卡金矿土壤地球化学特征及其评价[J]. 物探与化探, 2017, 41(4): 641-647.
[11] 刘洪微. 云南省景谷帕断山矿区土壤地球化学测量效果及找矿前景[J]. 物探与化探, 2017, 41(4): 619-626.
[12] 李鹏宇, 石文杰, 魏俊浩, 熊乐, 周红智, 尤静静. 青海省兴海县某地区铜多金属找矿潜力评价——基于1:5万土壤化探数据处理与异常信息提取[J]. 物探与化探, 2017, 41(2): 194-202.
[13] 章贤能, 寇尚文, 刘艾华. 安徽宁国东山坞地区土壤地球化学特征与评价[J]. 物探与化探, 2017, 41(1): 71-78.
[14] 田帆, 朱杰勇, 白光顺, 孙滨. 云南富宁水合口金矿土壤地球化学异常评价与找矿[J]. 物探与化探, 2016, 40(4): 661-666.
[15] 龚玉爽, 侯海静, 孙成杰, 盖寿山, 王忠杰. 赞比亚西北省卡森帕A矿区土壤地球化学测量及找矿效果[J]. 物探与化探, 2016, 40(3): 482-487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com