Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (1): 182-190    DOI: 10.11720/wtyht.2022.1232
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于Gmsh的起伏地形下井—地直流电法正演模拟
张宇哲(), 孟麟, 王智()
长江大学 电子信息学院,湖北 荆州 434023
Forward modeling of well-ground direct current resistivity method for undulating terrain based on Gmsh
ZHANG Yu-Zhe(), MENG Lin, WANG Zhi()
School of Electronics & Information Engineering, Yangtze University, Jingzhou 434023, China
全文: PDF(6358 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

采用Gmsh软件对起伏地形下的异常体模型进行建模和不规则网格剖分,将剖分网格数据应用到2.5D有限元正演程序中,并使用井—地联合观测方法对正演计算结果进行分析。分析结果表明:采用不规则网格剖分拟合起伏地形和使用井—地联合观测方法来进行起伏地形下的地质情况勘探能得到较好的结果,同时还研究了使用不同观测装置时山谷地形对下方异常响应的影响,研究结果对实际勘探工作有借鉴意义。研究证明了有限元软件Gmsh在地球物理有限单元法正演建模和网格剖分方面有良好的应用价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张宇哲
孟麟
王智
关键词 Gmsh井—地观测装置起伏地形有限单元法    
Abstract

This paper focuses on the forward modeling of the direct current resistivity method. To this end, the Gmsh software-a 3D finite element grid generator-was used to model the anomalous bodies under undulating terrain and conduct relevant irregular grid division. Then partial grid data generated by Gmsh were applied to a 2.5D finite element forward modeling program, and the forward calculation results were analyzed using the well-ground joint observation method. The analytical results show that good effects can be obtained by using irregular grids to fit the undulating terrain and using the well-ground joint observation method to explore the geological conditions under the undulating terrain. The effects of the valley terrain on the anomalous response below using different observation devices were also studied. The results achieved are practically significant and they also prove that the Gmsh software has great application value in the forward modeling and meshing based on the finite element method.

Key wordsGmsh    well-ground observation devices    undulating terrain    finite element method
收稿日期: 2021-04-26      修回日期: 2021-08-02      出版日期: 2022-02-20
ZTFLH:  P631  
基金资助:国家自然科学基金(41604093)
通讯作者: 王智
作者简介: 张宇哲(1999-),男,湖北荆州人,硕士在读,主要研究方向为电磁法数值模拟。Email: 2795484843@qq.com
引用本文:   
张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
ZHANG Yu-Zhe, MENG Lin, WANG Zhi. Forward modeling of well-ground direct current resistivity method for undulating terrain based on Gmsh. Geophysical and Geochemical Exploration, 2022, 46(1): 182-190.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1232      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I1/182
Fig.1  观测装置示意[18]
Fig.2  水平层状模型
Fig.3  电位数值解和解析解对比
Fig.4  模型示意
Fig.5  模型一的视电阻率断面(井—地二极装置)
Fig.6  模型二的视电阻率断面
Fig.7  模型二的正演结果
Fig.8  模型三的视电阻率断面
Fig.9  模型三的正演结果
Fig.10  Gmsh简例
[1] Geuzaine C, Remacle J. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities[J]. International Journal for Numerical Methods in Engineering, 2009,79(11):1309-1331.
doi: 10.1002/nme.2579
[2] Coggon J H. Electromagnetic and electrical modeling by the finite element method[J]. Geophysics, 1971,36(2):132-155.
doi: 10.1190/1.1440151
[3] Rijo L. Modeling of electric and electromagnetic data [D]. Phd Thesis, Univ. of Utah, 1977.
[4] Dey A, Morrison H F. Resistivity modeling for arbitrarily shaped three-dimensional structured[J]. Geophysics, 1979,44(4):753-780.
doi: 10.1190/1.1440975
[5] Wu X P. A 3-D finite-element algorithm for DC resistivity modelling using the shifted incomplete Cholesky conjugate gradient method[J]. Geophysical Journal International, 2003,154(3):947-956.
doi: 10.1046/j.1365-246X.2003.02018.x
[6] Cardarelli E, Fischanger F. 2D data modelling by electrical resistivity tomography for complex subsurface geology[J]. Geophysical Prospecting, 2006,54(2):121-133.
doi: 10.1111/gpr.2006.54.issue-2
[7] 汤井田, 王飞燕, 任政勇. 基于非结构化网格的2.5-D直流电自适应有限元数值模拟[J]. 地球物理学报, 2010,53(3):708-716.
[7] Tang J T, Wang F Y, Ren Z Y. 2.5-D DC resistivity modeling by adaptive finite-element with unstructured triangulation[J]. Chinese Journal of Geophysics, 2010,53(3):708-716.
[8] Ren Z Y, Tang J T. 3D direct current resistivity modeling with unstructured mesh by adaptive finite-element method[J]. Geophysics, 2010,75(1):7-17.
[9] Ren Z Y, Thomas K, Stewart G. A goal-oriented adaptive finite-element approach for plane wave 3-D electromagnetic modelling[J]. Geophysical Journal International, 2013,194(2):700-718.
doi: 10.1093/gji/ggt154
[10] Ren Z Y, Tang J T. A goal-oriented adaptive finite-element approach for multi-electrode resistivity system[J]. Geophysical Journal International, 2014,199(1):136-145.
doi: 10.1093/gji/ggu245
[11] Pan K J, Tang J T. 2.5-D and 3-D DC resistivity modelling using an extrapolation cascadic multigrid method[J]. Geophysical Journal International, 2014,197(3):1459-1470.
doi: 10.1093/gji/ggu094
[12] Zhang Q J, Dai S K, Chen L W, et al. Finite element numerical simulation of 2.5D direct current method based on mesh refinement and recoasement [J]. Applied Geophysics, 2016, 13(2): 257-266,416-417.
[13] Kuang X T, Yang H, Zhu X Y, et al. Singularity-free expression of magnetic field of cuboid under undulating terrain[J]. Applied Geophysics, 2016,13(2):238-248,416.
doi: 10.1007/s11770-016-0565-x
[14] 王智, 吴爱平, 李刚. 起伏地表条件下的井中激电井地观测正演模拟研究[J]. 石油物探, 2018,57(6):927-935.
[14] Wang Z, Wu A P, Li G. Forward modeling of borehole-ground induced polarization method under undulating topography[J]. Geophysical Prospecting for Petroleum, 2018,57(6):927-935.
[15] 武建平, 张超, 陈剑平, 等. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020,44(5):1066-1072.
[15] Wu J P, Zhang C, Chen J P, et al. Three dimensional finite element simulation of wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2020,44(5):1066-1072.
[16] 严波, 刘颖, 叶益信. 基于对偶加权后验误差估计的2.5维直流电阻率自适应有限元正演[J]. 物探与化探, 2014,38(1):145-150.
[16] Yan B, Liu Y, Ye Y X. 2.5D direct current resistivity adaptive finite-element numerical modeling based on dual weighted posteriori error estimation[J]. Geophysical and Geochemical Exploration, 2014,38(1):145-150.
[17] 徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994.
[17] Xu S Z. The finite element method in geophysics [M]. Beiing: Science Press, 1994.
[18] 黄俊革, 阮百尧, 王家林, 等. 钻井—地表电极联合电阻率观测装置的异常特征研究[J]. 地球物理学报, 2009,52(5):1348-1362.
[18] Huang J G, Ruan B X, Wang J L, et al. A study on anomaly of borehole-to-ground joint resistivity surveying system[J]. Chinese Journal of Geophysics, 2009,52(5):1348-1362.
[1] 杨天春, 胡峰铭, 于熙, 付国红, 李俊, 杨追. 天然电场选频法的响应特性分析与应用[J]. 物探与化探, 2023, 47(4): 1010-1017.
[2] 曾波, 刘硕, 杨军, 冯德山, 袁忠明, 柳杰, 王珣. 地表起伏对地下管线GPR探测的影响[J]. 物探与化探, 2023, 47(4): 1064-1070.
[3] 李志强, 孙洋, 谭捍东, 张承客. 带地形的ZTEM倾子资料三维正反演研究[J]. 物探与化探, 2021, 45(3): 758-767.
[4] 武建平, 张超, 陈剑平, 杨玺, 裴运军, 周庆东. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066-1072.
[5] 何畏, 吴文鹂, 李建华, 林品荣, 梁萌, 顾观文, 冯斌. 一种电磁法三维数值模拟的建模与网格剖分方法[J]. 物探与化探, 2018, 42(6): 1272-1279.
[6] 韩雪, 朱伟国. 起伏地形条件下电阻率法三维反演[J]. 物探与化探, 2017, 41(1): 136-140.
[7] 匡星涛, 吴健生, 杨海, 郑广如, 朱晓颖. 起伏地形条件下的磁异常二维聚焦反演及应用[J]. 物探与化探, 2016, 40(4): 788-797.
[8] 熊彬, 罗天涯, 蔡红柱, 刘云龙, 吴延强, 郭胜男. 起伏地形大地电磁二维反演[J]. 物探与化探, 2016, 40(3): 587-593.
[9] 王珺璐, 王萌, 李荡, 李建华, 林品荣. 磁化率对大地电磁响应的影响及其提取方法[J]. 物探与化探, 2015, 39(6): 1292-1298.
[10] 强建科, 周俊杰, 满开峰. 时间域航空电磁法2.5维有限元模拟[J]. 物探与化探, 2015, 39(5): 1059-1062.
[11] 朱庆俊, 李风哲. SURFER软件在地球物理资料处理中的应用[J]. 物探与化探, 2007, 31(3): 250-251,255.
[12] 眭素文, 于长春, 姚长利. 起伏地形剖面重磁异常半智能处理解释软件及应用[J]. 物探与化探, 2004, 28(1): 65-68.
[13] 安玉林. 起伏地形上规则二度体复重磁场正演和直接反演[J]. 物探与化探, 2003, 27(1): 33-38.
[14] 杨华, 李金铭. 起伏地形对近矿围岩充电法影响规律的数值模拟研究[J]. 物探与化探, 1999, 23(3): 202-210215.
[15] 段本春, 朱永盛. 最优化波数在点源二维有限元正演计算中的应用[J]. 物探与化探, 1994, 18(3): 186-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com