Please wait a minute...
E-mail Alert Rss
 
物探与化探  2017, Vol. 41 Issue (1): 136-140    DOI: 10.11720/wtyht.2017.1.21
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
起伏地形条件下电阻率法三维反演
韩雪, 朱伟国
广东省地质物探工程勘察院, 广东 广州 510800
A discussion on 3D inversion result of the resistivity method under the condition of undulate topography
HAN Xue, ZHU Wei-Guo
Geological and Geophysical Engineering Exploration Institute of Guangdong;Guangzhou 510800, China
全文: PDF(1826 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地形起伏下的三维反演问题是当前电阻率法研究的一个难题。为了更好地解决上述问题,采用加权正则化共轭梯度法实现起伏地形三维电阻率反演算法。该方法引入了加权正则化思想,显著降低了迭代时目标函数发散的问题,提高了反演稳定性。对比了两种消除反演中地形影响的方法,结果表明,直接带地形的电阻率法三维反演具有更好的分辨率,能有效地消除地形所造成的误差,但在起伏角度偏大,如河流、堤坝等接近垂直角度时,使用此方法会使得反演发散得不到满意的结果;此时采用基于地形校正的方法有一定的效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

3D resistivity inversion under the condition of undulate topography is a difficult problem in the current resistivity method. In order to solve this problem, the authors use a weighted regularized conjugate gradient method to accomplish three-dimensional resistivity inversion algorithm of undulating terrain. The method introduces weighted regularization thought which can significantly reduce the problem of the objective function iteration divergence and improve the stability of the inversion. A comparison of the two methods in eliminating topographic influence in the inversion shows that the direct use of the terrain resistivity method of 3D inversion can yield better resolution, which can effectively eliminate the error caused by terrain. Nevertheless, under the condition that the rolling angle is almost vertical such as the cases of rivers and dams. The continual utilization of this method can hardly get a satisfactory result because it causes the inverse divergence. In such cases, the use of topographic correction method has some advantageous effects.

收稿日期: 2016-06-20      出版日期: 2017-02-10
:  P631  
作者简介: 韩雪(1988-),女,助理工程师,从事地球物理勘查工作。Email:kahanxue@126.com
引用本文:   
韩雪, 朱伟国. 起伏地形条件下电阻率法三维反演[J]. 物探与化探, 2017, 41(1): 136-140.
HAN Xue, ZHU Wei-Guo. A discussion on 3D inversion result of the resistivity method under the condition of undulate topography. Geophysical and Geochemical Exploration, 2017, 41(1): 136-140.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2017.1.21      或      https://www.wutanyuhuatan.com/CN/Y2017/V41/I1/136

[1] 李金铭.地电场与电法勘探[M].北京:地质出版社,2005.
[2] Ramirez A,Daily W,Binley A,et al.Detection of leaks in underground storage tanks using electrical resistance methods[J].Journal of Environmental and Engineering Geophysics,1996,1(3):189-203.
[3] Oldenburg D W,Li Y G,Ellis R G.Inversion of geophysical data over a copper gold porphyry deposit:A case history for Mt.Milligan[J].Geophysics,1997,62(5):1419-1431.
[4] Kemna A,Kulessa B,Vereecken H.Imaging and characterisation of subsurface solute transport using electrical resistivity tomography(ERT) and equivalent transport models[J].Journal of Hydrology,2002,267(3):125-146.
[5] 徐世浙.电阻率二维地形改正的地质效果[J].地质与勘探,1989,25(5):43-45.
[6] 汤洪志,刘庆成,龚育龄.边界单元法在高密度电阻率法二维地形改正中的应用效果[J].物探与化探,2001,25(6):457-459.
[7] Fox R C,Hohmann G W,Killpack T J,et al.Topographic effects in resistivity and induced-polarization surveys[J].Geophysics,1980,45(1):75-93.
[8] Holcombe H T,Jiracek G R.Three-dimensional terrain corrections in resistivity surveys[J].Geophysics,1984,49(4):439-452.
[9] Tong L T,Yang C H.Incorporation of topography into two-dimensional resistivity inversion[J].Geophysics,1990,55(3):354-361.
[10] Yi M J,Kim J H,Song Y,et al.Three-dimensional imaging of subsurface structures using resistivity data[J].Geophysical Prospectig,2001,49(4):483-497.
[11] 吴小平.非平坦地形条件下电阻率三维反演[J].地球物理学报,2005,48(4):932-936.
[12] Günther T,Rücker C,Spitzer K.Three-dimensional modelling and inversion of dc resistivity data incorporating topography-II.Inversion[J].Geophysical Journal International,2006,166(2):506-517.
[13] Papadopoulos N G,Yi M J,Kim J H,et al.Geophysical investigation of tumuli by means of surface 3D Electrical Resistivity Tomography[J].Journal of Applied Geophysics,2010,70(3):192-205.
[14] Plattner A,Maurer H R,Vorloeper J,et al.3-D electrical resistivity tomography using adaptive wavelet parameter grids[J].Geophysical Journal International,2012,189(1):317-330.
[15] Tikhonov A N,Leonov A S,Yagola A G.Non-linear Illposed Problems[M].London:Chapman and Hall,1998.
[16] Ellis R G,Oldenburg D W.The pole-pole 3-D DC-resistivity inverse problem:a conjugate gradient approach[J].Geophysical Journal International,1994,119(1):187-194.
[17] Li Y,Oldenburg D W.Inversion of 3-D DC resistivity data using an approximate inverse mapping[J].Geophysical Journal International,2007,116(3):527-537.
[18] Pain C C,Herwanger J V,Worthington M H,et al.Effective multidimensional resistivity inversion using finite-element techniques[J].Geophysical Journal International,2002,151(3):710-728.
[19] Pidlisecky A,Haber E,Knight R.RESINVM3D:A 3D resistivity inversion package[J].Geophysics,2007,72(2):H1-H10.
[20] Marescot L,Lopes S P,Rigobert S,et al.Nonlinear inversion of geoelectric data acquired across 3D objects using a finite-element approach[J].Geophysics,2008,73(3):F121-F133.

[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com