Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (4): 965-972    DOI: 10.11720/wtyht.2025.1189
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
青藏高原北缘硒背景及其对土壤因子的响应
马强1,2(), 强晓农3(), 吴金宏1, 代璐1,2, 贺连珍1,2, 王帅1,2, 马楠1,2
1.青海省第五地质勘查院, 青海 西宁 810099
2.青海省富硒资源利用工程技术研究中心, 青海 西宁 810099
3.海西州自然资源综合调查中心, 青海 德令哈 817099
Selenium background values and their responses to soil factors along the northern margin of the Tibetan Plateau
MA Qiang1,2(), QIANG Xiao-Nong3(), WU Jin-Hong1, DAI Lu1,2, HE Lian-Zhen1,2, WANG Shuai1,2, MA Nan1,2
1. The Fifth Geological Exploration Institute of Qinghai Province, Xining 810099, China
2. Engineering Technology Research Center for Selenium-rich Resource Utilization of Qinghai Province, Xining 810099, China
3. Haixi Prefecture Natural Resources Comprehensive Survey Center, Delingha 817099, China
全文: PDF(3857 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为摸清青藏高原北缘土壤硒含量背景、服务富硒土地资源利用和缺硒风险防控,系统采集了8 273件表层和2 190件深层土壤样品,分析测试了Se及其他相关指标,剖析了土壤Se与土壤类型、理化性质等因子间的响应关系。结果表明,青藏高原北缘表层土壤Se背景值为0.188×10-6,深层土壤Se背景值为0.153×10-6;土壤Se在门源盆地、西宁盆地、青海湖北部、拉脊山和达坂山形成高值区;古近系西宁群红色碎屑岩和含煤碎屑岩风化物成土母质区土壤中Se含量最高;土壤Se与pH呈负相关,与有机质、铁铝氧化物呈正相关;土壤Se在林地、草地及含泥炭丰富的沼泽土、草甸土中易富集。研究认为,古近系西宁群红色碎屑岩和含煤碎屑岩等Se高背景成土母质是形成富硒土壤的主控因子,含炭质丰富的林草地及草甸土、沼泽土为次控因子,经水系搬运和沉积改造形成了青藏高原北缘土壤硒局部富集的空间分布格局。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马强
强晓农
吴金宏
代璐
贺连珍
王帅
马楠
关键词 青藏高原北缘土壤硒背景值影响因素    
Abstract

This study aims to determine the selenium (Se) background values of oils along the northern margin of the Qinghai-Tibet Plateau and serve the utilization of Se-rich resources, as well as the prevention and control of Se deficiency risks. To this end, this study systematically collected 8 273 surface soil samples and 2 190 deep soil samples, analyzed and tested the Se content and other relevant indicators, and examined the response relationships between soil Se and factors such as soil type and physicochemical properties. The results indicate that the surface and deep soils exhibit Se background values of 0.188×10-6 and 0.153×10-6, respectively. High Se background values are identified in the Menyuan Basin, the Xining Basin, the northern part of Qinghai Lake, and the Lagrange and Daban mountains. The highest Se background values occur in soils with the weathering materials of red and coal-bearing clastics of the Paleogene Xining Group as parent materials. The Se background values exhibit a negative correlation with pH and a positive correlation with the contents of organic matter and iron-aluminum oxides. Se in soils tends to accumulate in woodlands, grasslands, peat-rich marsh soils, and meadow soils. The study posits that the soil-forming parent materials with Se background values, including red and coal-bearing clastics of the Paleogene Xining Group, serve as the primary factor controlling the formation of Se-rich soils, and the secondary controlling factors include carbon-rich forests, grasslands, meadow soils, and marsh soils. The transportation by water streams and sedimentary transformation of these controlling factors contribute to the formation of the spatial distribution pattern of localized Se enrichment in the soils of the northern margin of the Qinghai-Tibet Plateau.

Key wordsnorthern margin of the Tibet Plateau    soil selenium    background value    influential factor
收稿日期: 2024-04-24      修回日期: 2024-08-04      出版日期: 2025-08-20
ZTFLH:  P595  
  X142  
通讯作者: 强晓农(1986-),男,工程师,地球化学专业,主要从事自然资源调查监测工作。Email:264622792@qq.com
作者简介: 马强(1986-),男,硕士,高级工程师,地球化学专业,主要从事生态地球化学工作。Email:113369947@qq.com
引用本文:   
马强, 强晓农, 吴金宏, 代璐, 贺连珍, 王帅, 马楠. 青藏高原北缘硒背景及其对土壤因子的响应[J]. 物探与化探, 2025, 49(4): 965-972.
MA Qiang, QIANG Xiao-Nong, WU Jin-Hong, DAI Lu, HE Lian-Zhen, WANG Shuai, MA Nan. Selenium background values and their responses to soil factors along the northern margin of the Tibetan Plateau. Geophysical and Geochemical Exploration, 2025, 49(4): 965-972.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1189      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I4/965
Fig.1  研究区地质简图
1—新生界;2—中生界;3—上古生界;4—下古生界;5—新元古界;6—中元古界;7—古元古界;8—采样点;①—走廊南山;②—门源盆地;③—达坂山;④—青海湖盆地;⑤—西宁盆地;⑥—民和盆地;⑦—拉脊山;⑧—共和盆地;⑨—贵德盆地;⑩—青海南山;11—河卡山
Fig.2  研究区表层(a)和深层(b)土壤Se数据直方图
指标 原数据(N) 最大值(Max) 最小值(Min) 均值($\stackrel{-}{X}$) 变异系数(CV) 剔除数(N2) 中位数(M) 背景值 全国土壤背景值[11]
表层 8273 2.307 0.017 0.199 0.50 283 0.186 0.188 0.17
深层 2190 2.275 0.037 0.169 0.64 109 0.151 0.153 0.26
Table 1  土壤Se含量地球化学参数统计
Fig.3  表层土壤Se地球化学分布
Fig.4  深层土壤Se地球化学分布
成土母质 表层 深层
样本数 Se均值/10-6 样本数 Se均值/10-6
第四系沉积物 2751 0.19±0.78 679 0.16±0.83
碎屑岩类风化物 3509 0.19±0.10 939 0.17±0.93
火成岩类风化物 1148 0.24±0.12 331 0.20±0.16
变质岩类风化物 865 0.22±0.90 241 0.18±0.14
Table 2  不同成土母质区土壤Se含量平均值
指标 Se S pH Corg Fe2O3 Al2O3
Se 1
S 0.150** 1
pH -0.345** -0.063** 1
Corg 0.379** -0.038** -0.749** 1
Fe2O3 0.382** -0.059** -0.522** 0.454** 1
Al2O3 0.172** -0.138** -0.418** 0.316** 0.740** 1
Table 3  土壤Se与其他指标相关性分析
Fig.5  Se与相关元素含量散点图
土壤类型
(样本数)
土壤Se平
均值/10-6
土壤类型
(样本数)
土壤Se平
均值/10-6
沼泽土(n=107) 0.27±0.10 灌淤土(n=118) 0.14±0.06
山地草甸土(n=1253) 0.23±0.15 高山寒漠土(n=74) 0.21±0.05
栗钙土(n=2940) 0.18±0.09 高山草原土(n=480) 0.18±0.10
灰褐土(n=304) 0.23±0.07 高山草甸土(n=1008) 0.21±0.08
灰钙土(n=364) 0.20±0.09 风沙土(n=74) 0.06±0.03
黑钙土(n=1539) 0.20±0.07 潮土(n=12) 0.19±0.02
Table 4  不同土壤类型Se平均值
[1] 李明龙. 表生环境介质中硒与重金属的地球化学特征及生态效应研究——以湖北省恩施市为例[D]. 成都: 成都理工大学, 2021.
[1] Li M L. Geochemical characteristics and ecological effects of selenium and heavy metals in supergene environmental media—A case study of Enshi City,Hubei Province[D]. Chengdu: Chengdu University of Technology, 2021.
[2] Farooq M R, Zhang Z Z, Yuan L X, et al. Characterization of selenium speciation in Se-enriched crops:Crop selection approach[J]. Journal of Agricultural and Food Chemistry, 2024, 72(7):3388-3396.
[3] 徐雪生, 骆检兰, 黄逢秋, 等. 富硒耕地质量评价体系构建及其在湖南省新田县新圩镇的应用[J]. 中国地质, 2022, 49(3):789-801.
[3] Xu X S, Luo J L, Huang F Q, et al. Construction of the evaluation system for Se-rich arable land and its application in Xinxu Town,Xintian County,Hunan Province[J]. Geology in China, 2022, 49(3):789-801.
[4] Zdziebłowska S, Zajda J, Ruzik L. Microalgae enriched in selenium as a good source of micronutrients[J]. Food Bioscience, 2024,59:103908.
[5] 朱明勇, 熊永柱, 刘友存, 等. 广东阴那山土壤重金属污染特征、风险评价及源解析[J]. 环境污染与防治, 2023, 45(9):1265-1270.
[5] Zhu M Y, Xiong Y Z, Liu Y C, et al. Pollution characteristics,risk assessment and source analysis of soil heavy metals in Yinna Mountain of Guangdong[J]. Environmental Pollution & Control, 2023, 45(9):1265-1270.
[6] 刘金宝, 徐宏国, 袁宏伟, 等. 内蒙古土默特左旗典型草甸土中硒赋存形态特征[J]. 物探与化探, 2024, 48(1):245-254.
[6] Liu J B, Xu H G, Yuan H W, et al. Speciation of selenium in typical meadow soils in Tumed Left Banner,Inner Mongolia,China[J]. Geophysical and Geochemical Exploration, 2024, 48(1):245-254.
[7] 刘熙会, 张小平, 李倩倩, 等. 青藏高原地区大骨节病的流行特征及致病因素探究[J]. 环境化学, 2022, 41(4):1137-1147.
[7] Liu X H, Zhang X P, Li Q Q, et al. Epidemiological trend and pathogenic factors of KBD in Qinghai-Tibet Plateau region[J]. Environmental Chemistry, 2022, 41(4):1137-1147.
[8] Fordyce F M. Selenium deficiency and toxicity in the environment[J]. Essentials of Medical Geology:Revised Edition,2013:375-416.
[9] 姬丙艳, 马瑛, 张亚峰, 等. 青藏高原北缘富硒土壤地球化学特征研究及应用[J]. 青海科技, 2018, 25(6):7-10.
[9] Ji B Y, Ma Y, Zhang Y F, et al. Study and application of geochemical characteristics of selenium-rich soils in the northern margin of the Tibetan Plateau[J]. Qinghai Science and Technology, 2018, 25(6):7-10.
[10] 刘阳, 姜冰, 张海瑞, 等. 山东省青州市表层土壤硒元素地球化学特征[J]. 现代地质, 2022, 36(3):933-940.
[10] Liu Y, Jiang B, Zhang H R, et al. Geochemical characteristics of selenium in surface soil of Qingzhou,Shandong[J]. Geoscience, 2022, 36(3):933-940.
[11] 奚小环, 侯青叶, 杨忠芳, 等. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5):1095-1108.
[11] Xi X H, Hou Q Y, Yang Z F, et al. Big data based studies of the variation features of Chinese soil's background value versus reference value:A paper written on the occasion of Soil Geochemical Parameters of China's publication[J]. Geophysical and Geochemical Exploration, 2021, 45(5) :1095-1108.
[12] 李海蓉, 杨林生, 谭见安, 等. 我国地理环境硒缺乏与健康研究进展[J]. 生物技术进展, 2017, 7(5):381-386.
doi: 10.19586/j.2095-2341.2017.0095
[12] Li H R, Yang L S, Tan J A, et al. Progress on selenium deficiency in geographical environment and its health impacts in China[J]. Current Biotechnology, 2017, 7(5):381-386.
doi: 10.19586/j.2095-2341.2017.0095
[13] 迟凤琴, 徐强, 匡恩俊, 等. 黑龙江省土壤硒分布及其影响因素研究[J]. 土壤学报, 2016, 53(5):1262-1274.
[13] Chi F Q, Xu Q, Kuang E J, et al. Distribution of selenium and its infl uencing factors in soils of Heilongjiang Province,China[J]. Acta Pedologica Sinica, 2016, 53(5):1262-1274.
[14] 黄春雷. 金衢盆地土壤中硒的富集机理及其生物有效性影响因素研究[D]. 武汉: 中国地质大学(武汉), 2022.
[14] Huang C L. Study on enrichment mechanism of selenium in soil of jinqu basin and influencing factors of its bioavailability[D]. Wuhan: China University of Geosciences(Wuhan), 2022.
[15] 陈雪, 杨忠芳, 陈岳龙, 等. 广西中东部9县区农田土壤Cd输入通量研究[J]. 物探与化探, 2019, 43(2):415-427.
[15] Chen X, Yang Z F, Chen Y L, et al. Cadmium input flux in farmland soil of nine counties in middle and east Guangxi[J]. Geophysical and Geochemical Exploration, 2019, 43(2):415-427.
[16] 廖启林, 崔晓丹, 黄顺生, 等. 江苏富硒土壤元素地球化学特征及主要来源[J]. 中国地质, 2020, 47(6):1813-1825.
[16] Liao Q L, Cui X D, Huang S S, et al. Element geochemistry of selenium-enriched soil and its main sources in Jiangsu Province[J]. Geology in China, 2020, 47(6):1813-1825.
[17] 李金哲, 龚庆杰, 刘亚轩, 等. 风化过程中硒背景值的定量表征[J]. 现代地质, 2018, 32(5):1031-1041.
[17] Li J Z, Gong Q J, Liu Y X, et al. Quantitative description of the geochemical background value of selenium during weathering based on the certified reference materials in China[J]. Geoscience, 2018, 32(5):1031-1041.
[18] 鲍丽然, 邓海, 贾中民, 等. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 2020, 47(6):1625-1636.
[18] Bao L R, Deng H, Jia Z M, et al. Ecological and health risk assessment of heavy metals in farmland soil of northwest Xiushan,Chongqing[J]. Geology in China, 2020, 47(6):1625-1636.
[19] 严桃桃, 吴轩, 权养科, 等. 从岩石到土壤再到水系沉积物:风化过程的岩性地球化学基因[J]. 现代地质, 2018, 32(3):453-467.
[19] Yan T T, Wu X, Quan Y K, et al. Rocks and their weathered products:A geochemical lithogene[J]. Geoscience, 2018, 32(3):453-467.
[20] 袁宏伟, 陈江均, 郭腾达, 等. 巴彦淖尔市临河区狼山镇和新华镇一带富硒土壤地球化学特征及影响因素[J]. 地质与勘探, 2022, 58(5):1027-1041.
[20] Yuan H W, Chen J J, Guo T D, et al. Geochemical characteristics and influencing factors of Se-rich soils in Langshan and Xinhua towns,Linhe district,Bayannur City[J]. Geology and Exploration, 2022, 58(5):1027-1041.
[21] 马强, 张亚峰, 黄强, 等. 青海省富硒土壤标准探讨[J]. 物探与化探, 2022, 46(3):772-780.
[21] Ma Q, Zhang Y F, Huang Q, et al. Exploring the standard of Se-rich soil in Qinghai province[J]. Geophysical and Geochemical Exploration, 2022, 46(3):772-780.
[22] 宋礼生. 陕西紫阳焕古滩奥陶纪—志留纪笔石地层[J]. 西北地质科学, 1991(2):87-99.
[22] Song L S. Graptolitic strata of Ordovican-Silurian period in Huangutan,Ziyang,Shaanxi[J]. Northwest Geoscience, 1991(2):87-99.
[23] 付巧玲, 邱顺才. 论土壤硒驱动机制——以河南省崤山地区为例[J]. 地质与勘探, 2023, 59(3):580-590.
[23] Fu Q L, Qiu S C. On the driving mechanism of soil Se:Taking the Xiaoshan area of Henan Province as an example[J]. Geology and Exploration, 2023, 59(3):580-590.
[24] 包凤琴, 成杭新, 永胜, 等. 土默特左旗农田土壤环境质量综合评价及特色农业开发建议[J]. 物探与化探, 2023, 47(2):487-495.
[24] Bao F Q, Cheng H X, Yong S, et al. The comprehensive evaluation of farmland soil environmental quality and suggestions on the development of agricultive with distinctive local features in Tumed Left Banner,Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2023, 47(2):487-495.
[1] 鲁江, 朱丽芬, 骆检兰, 刘显丽. 湘江流域土壤重金属元素地球化学背景值与基准值研究[J]. 物探与化探, 2025, 49(3): 687-696.
[2] 秦浩林, 李明龙, 郑德顺, 孙风波, 张凯. 鄂西典型高硒区土壤和农作物硒含量特征及其影响因素研究[J]. 物探与化探, 2025, 49(2): 490-499.
[3] 肖凯琦, 徐宏根, 戴亮亮, 李毅, 李凯. 凤凰县土壤—农作物系统中Cd含量及迁移富集特征[J]. 物探与化探, 2024, 48(4): 1136-1145.
[4] 齐娟娟. 基于微动的千米深度勘探关键影响因素[J]. 物探与化探, 2024, 48(3): 777-785.
[5] 史敬涛, 刘俊建, 张军超, 王江玉龙, 姜禹戈, 王末, 李横飞, 杨文号, 颜翔锦. 浅山区典型小流域土壤重金属影响因素及来源分析[J]. 物探与化探, 2024, 48(3): 834-846.
[6] 彭学锐, 陈翔, 周思裕. 广西梧州六堡茶茶叶及根系土中硒含量影响因素[J]. 物探与化探, 2024, 48(2): 545-554.
[7] 多吉卫色, 次仁旺堆, 尼玛洛卓, 周鹏, 尼玛次仁. 西藏白朗县农田系统硒含量特征及影响因素[J]. 物探与化探, 2023, 47(4): 1118-1126.
[8] 黄平安, 王夏青, 唐湘玲, 王玉堂, 李玮, 罗增, 吕飞亚. X射线荧光光谱岩心扫描影响因素及校正方法的研究进展[J]. 物探与化探, 2023, 47(3): 726-738.
[9] 李世宝, 杨立国, 熊万里, 马志超, 袁宏伟, 段吉学. 内蒙古巴彦淖尔市临河区富硒耕地硒形态特征及其影响因素[J]. 物探与化探, 2023, 47(2): 477-486.
[10] 赵军, 孟欣佳, 李冰, 刘志民. 坑道聚焦直流激电法电流场分布特性及探测影响因素分析[J]. 物探与化探, 2023, 47(1): 120-128.
[11] 邹山进洪. 闽侯县表层土壤及农产品硒含量特征[J]. 物探与化探, 2023, 47(1): 247-256.
[12] 邢润华. 安徽省宣城市土壤硒地球化学特征及成因分析[J]. 物探与化探, 2022, 46(3): 750-760.
[13] 侯进凯, 宋延斌, 朱瑞祯, 莘丰培, 周建川, 鲁富兰, 姚婕. 洛阳市伊川县鸦岭镇—汝阳县小店镇一带表层土壤硒形态研究[J]. 物探与化探, 2022, 46(2): 511-517.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 奚小环, 侯青叶, 杨忠芳, 叶家瑜, 余涛, 夏学齐, 成杭新, 周国华, 姚岚. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com