Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (1): 34-41    DOI: 10.11720/wtyht.2020.1227
     地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
重磁资料在鄂尔多斯盆地西南缘基底研究中的应用
宁媛丽1,2, 周子阳1,2, 孙栋华1,2
1. 核工业航测遥感中心,河北 石家庄 050002
2. 中核集团 铀资源地球物理勘查技术中心(重点实验室),河北 石家庄 050002
The application of magnetic and gravity data on research the basement in the southwest of Ordos Basin
Yuan-Li NING1,2, Zi-Yang ZHOU1,2, Dong-Hua SUN1,2
1. Airborne Survey and Remote Sensing Center of Nuclear Industry,Shijiazhuang 050002,China
2. Key Laboratory of Uranium Resources Geophysical Exploration Technology,China Nuclear Industry Group Company,Shijiazhuang 050002,China
全文: PDF(3476 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了研究鄂尔多斯盆地西南缘基底特征,利用2016年在该地区获取的1∶5万高精度航磁资料和已有的1∶20万重力资料,推断了地壳断裂1条、基底断裂11条及中央古隆起的南部范围。采用重磁联合反演,大致了解了区内基底和盖层的埋深和厚度。应用欧拉反褶积和场源参数成像,分别用重力数据和航磁数据提取了区内奥陶系顶面的埋深信息和基底的埋深信息。研究表明:利用高精度航磁资料结合重力资料能够相对有效地识别基底特征。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宁媛丽
周子阳
孙栋华
关键词 鄂尔多斯盆地西南缘重磁联合反演欧拉反褶积场源参数成像基底构造基底埋深    
Abstract

Based on the aeromagnetic data of the latest high precision of 1∶50 000 and the existing gravity data of 1∶200 000 in 2016 in the southwestern margin of Ordos Basin, data processing was carried out. 1crust fault, 11 basement faults,3 cap rock faults and range of the southern central uplift. Using joint inversion of gravity and magnetic data the depth and thickness of basement and cap rock is roughly understood. The analysis indicates that the gravity field mainly reflects the difference in density between the Ordovician and its overlying sedimentary cover, and the magnetic field mainly reflects the structure of the crystalline substrate. Combined with joint inversion of gravity and magnetic data, the top surface depth of the Ordovician system and the crystallographic basement depth were extracted respectively using gravity data and aeromagnetic data by Euler deconvolution and source parameter imaging, and the basement lithofacies were studied. All that provided an important basis for the prediction of oil and gas in the area. The study believes that the use of high-precision aeromagnetic data combined with gravity data can identify base features effectively and make up for the lack of other geophysical data.

Key wordsthe southwestern margin of Ordos Basin    joint inversion of gravity and magnetic data    Eular deconvolution    source parameter imaging    basement structure    basement depth
收稿日期: 2019-04-25      出版日期: 2020-03-03
:  P631  
基金资助:中国地质调查局项目“鄂尔多斯盆地南缘1∶5万航空物探(磁、放)调查”(DD2016006628);中国核工业地质局项目(201642)
作者简介: 宁媛丽(1985-),女,工程师,主要从事航空物探勘查技术生产应用与研究工作。Email: 513065733@qq.com
引用本文:   
宁媛丽, 周子阳, 孙栋华. 重磁资料在鄂尔多斯盆地西南缘基底研究中的应用[J]. 物探与化探, 2020, 44(1): 34-41.
Yuan-Li NING, Zi-Yang ZHOU, Dong-Hua SUN. The application of magnetic and gravity data on research the basement in the southwest of Ordos Basin. Geophysical and Geochemical Exploration, 2020, 44(1): 34-41.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1227      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I1/34
Fig.1  研究区地貌影像
Fig.2  研究区布格重力异常和剩余布格重力异常
Fig.3  研究区航磁异常
Fig.4  研究区推断基底构造
Fig.5  重磁联合反演结果
a—反演剖面位置; b—A-A'剖面重磁联合反演结果; c—B-B'剖面重磁联合反演结果
1—白垩系-第四系;2—三叠系-侏罗系;3—石炭系-二叠系;4—寒武系-奥陶系;5—新太古界-新元古界;6—中基性岩体;7—推测逆断层及编号; 8—推测性质不明断层及编号;9—推测地层界线;10—实测剖面;11—拟合剖面;12—反演剖面及编号;13—居民点;14—研究区范围
序号 地质(层)体 主要岩性 密度
ρ/(g·cm-3)
磁化率
κ/(10-5SI)
磁化强度
M/(10-3 A·m-1)
1 白垩系—第四系 砂岩、泥岩 2.37 20 8.4
2 三叠系—侏罗系 砂岩、泥岩 2.4 15 6.3
3 石炭系—二叠系 砂岩、砾岩 2.5 13 5.5
4 寒武系—奥陶系 灰岩、白云岩 2.72 10 4.2
5 新太古界—新元古界 混合岩、角闪岩
片麻岩、麻粒岩
2.85 800 340
6 加里东期 中基性岩体 2.9 2000 420
Table 1  研究区主要地质层(体)密度、磁性特征
Fig.6  研究区结晶基底等深线
Fig.7  研究区奥陶系顶面等深线
[1] 贾进斗, 何国琦, 李茂松 , 等. 鄂尔多斯盆地基底结构特征及其对古生界天然气的控制[J]. 高校地质学报, 1997,3(2):144-153.
[1] Jia J D, He G Q, Li M S , et al. Strucural feature of basement in the Ordos Basin and its control to paleozonic gas[J]. Geological Journal of China Universities, 1997,3(2):144-153.
[2] 李明, 闫磊, 韩绍阳 . 鄂尔多斯盆地基底构造特征[J]. 吉林大学学报:地球科学版, 2012,42(3):39-43.
[2] Li M, Yan L, Han S Y . The basement tectonic characteristics in Ordos Basin[J]. Journal of Jilin University:Earth Science Edition, 2012,42(3):38-43.
[3] 秦敏 . 鄂尔多斯盆地基底构造重磁解释[D]. 北京:中国地质大学(北京), 2015.
[3] Qin M . Gravity and magnetic interpretation of basement tectonic in Ordos Basin[D]. Beijing: China University of Geosciences (Beijing), 2015.
[4] 张小龙 . 鄂尔多斯地区中上元古界分布与沉积环境及其油气勘探潜力[D]. 西安: 西北大学, 2015.
[4] Zhang X L . The distribution of Meso-Neoproterozonic and sedimentary environment and exploration potential of reservoirs in Ordos area[D]. Xi’an: Northwest University, 2015.
[5] 马小雷 . 鄂尔多斯盆地西南缘重磁场特征研究[J]. 西安文理学院学报:自然科学版, 2016,19(1):79-83.
[5] Ma X L . Research on the characteristics of gravity and magnetic field in the southwest margin of the Ordos Basin[J]. 2016,19(1):79-83.
[6] 李冰, 宋燕兵, 石磊 , 等. 鄂尔多斯盆地的磁场特征及地质意义[J]. 物探与化探, 2019,43(4) 767-777.
[6] Li B, Song Y B, Shi L , et al. Characteristics of gravity and magnetic fields in Ordos Basin and their geological significance[J]. Geophysical and Geochemical Exploration, 2019,43(4) 767-777.
[7] 周正 . 鄂尔多斯盆地南缘构造特征研究[D]. 西安: 西北大学, 2009.
[7] Zhou Z . Research on the structural characteristics of the southern region of Ordos[D]. Xi’an: Northwest University, 2009.
[8] 腾吉文, 王夫运, 赵文智 , 等. 鄂尔多斯盆地上地壳速度分布与沉积建造和结晶基底起伏的构造研究[J]. 地球物理学报, 2008,51(6):1753-1766.
[8] Teng J W, Wang F Y, Zhao W Z , et al. Velocity distribution of upper crust undulation of sedimentary formation and crystalline basement beneath the Ordos Basin in North China[J]. Chinese Journal of Geophysics, 2008,51(6):1753-1766.
[9] 邸领军 . 鄂尔多斯基底演化及沉积盖层相关问题的探究[D]. 西安: 西北大学, 2003.
[9] Di L J . Research on related problems of basement evolution and sedimentary cover in Ordos Basin[D]. Xi’an: Northwest University, 2003.
[10] 赵振宇, 郭彦如, 王艳 , 等. 鄂尔多斯盆地构造演化及古地理特征研究进展[J]. 特种油气藏, 2012,19(5):15-20.
[10] Zhao Z Y, Guo Y R, Wang Y , et al. Study progress in tectonic evolution and paleogeography of Ordos Basin[J]. Special Oil and Gas reservoirs, 2012,19(5):15-20.
[11] 王振涛 . 鄂尔多斯盆地基底特征及西、南缘奥陶纪构造演化及沉积响应[D]. 北京:中国地质大学(北京), 2014.
[11] Wang Z T . Basement features of the Ordos basin and the Ordovician tectonic-sedimentary respond in the western and southern margin[D]. Beijing: China University of Geosciences (Beijing), 2014.
[12] 刘光鼎, 郝天珧, 刘伊克 . 重磁研究对认识盆地的意义[J]. 地球物理学进展, 1996,11(2):1-15.
[12] Liu G D, Hao T Y, Liu Y K . The significance of gravity and magnetic research for knowing sedimentary basins[J]. Progress in Geophysics, 1996,11(2):1-15.
[13] 吴真玮, 曾昭发, 李静 , 等. 基于重磁场特征的松辽盆地基底岩性研究[J]. 地质与勘探, 2015,51(5):939-945.
[13] Wu Z W, Zeng Z F, Li J , et al. Distribution of basement lithology in the Songliao basin derived from gravity and magnetic anomalies[J]. Geology and Exploration, 2015,51(5):939-945.
[14] 熊盛青, 丁燕云, 李占奎 . 中国陆域磁性基底深度及其特征[J]. 地球物理学报, 2014,57(12):3981-3993.
[14] Xiong S H, Ding Y Y, Li Z K . Characteristics of China continent magnetic basement depth[J]. Chinese Journal of Geophysics, 2014,57(12):3981-3993.
[15] Bott M H, Ingles A . Matrix methods for joint interpretationof two-dimensional gravity and magnetic anomalieswith application to the Iceland-Faeroe Ridge[J]. Geophysical Journal of the Royal Astronomical Society, 1972,30(1):55-67.
[16] Menichetti V, Guillen A . Simultaneous interactive magneticand gravity inversion[J]. Geophysical Prospecting, 1983,31(6):929-944.
[17] 曾昭发, 吴燕冈, 郝立波 , 等. 基于泊松定理的重磁异常分析方法及应用[J]. 吉林大学学报: 地球科学版, 2006,36(2):279-283.
[17] Zeng Z F, Wu Y G, Hao L B , et al. The poisson’s theorem based analysis method and application of magnetic and gravity anomalies[J]. Journal of Jilin University: Earth Science Edition, 2006,36(2):279-283.
[18] 汪在君, 唐金生, 郑桂英 . 重磁—地震联合反演解释技术在大杨树盆地深层构造研究中的应用[J]. 中国石油勘探, 2007,12(1):54-59.
[18] Wang Z J, Tang J S, Zheng G Y . Application interpretation of joint gravity-magnetic-seism inversion in study of the deep structure in Dayangshu Basin[J]. China Petroleum Exploration, 2007,12(1):54-59.
[19] 孙帮民, 吴燕冈, 管彦武 . 重磁联合反演解释在长白山天池深部构造中的应用[J]. 世界地质, 2014,33(4):910-915.
[19] Sun B M, Wu Y G, Guan Y W . Application of joint inversion interpretation of gravity and magnetism in Tianchi deep structure of Changbai Mountain[J]. Global Geology, 2014,33(4):910-915.
[20] 王少昌, 付琐堂, 李熙哲 , 等. 鄂尔多斯盆地西缘古生代槽台过渡带裂谷系弧形构造带的形成与发展及对油气聚集富集规律的影响[J]. 天然气地球科学, 2005,16(4):421-427.
[20] Wang S C, Fu S T, Li X Z , et al. The influence to the accumulation of oil and gas of the development of the arcuate structure zone in the transition zone from the plat to the geosyncline in the west of Ordos Basin[J]. Natural Gas Geoscience, 2005,16(4):421-427.
[21] 潘爱芳, 赫英, 徐宝亮 , 等. 鄂尔多斯盆地基底断裂地球化学特征研究[J]. 西北大学学报:自然科学版, 2005,35(4):440-449.
[21] Pan A F, He Y, Xun B L , et al. A study on geochemistry feature of basement fractures in Ordos Basin[J]. Journal of Northwest University:Natural Science Edition, 2005,35(4):440-449.
[1] 陈青, 孙帅, 丁成艺, 黄小宇, 陈浩, 申鹏, 罗港, 魏耀聪. iTilt-Euler法在重力数据处理及断裂解释中的应用[J]. 物探与化探, 2021, 45(6): 1578-1587.
[2] 李弘, 俞建宝, 吕慧, 肖鹏飞. 雄县地热田重磁响应及控热构造特征研究[J]. 物探与化探, 2017, 41(2): 242-248.
[3] 李世斌, 马为, 徐新学, 郑国磊, 王茜, 李建超, 袁航. 天津市地球物理场特征及基底构造研究[J]. 物探与化探, 2015, 39(5): 937-943.
[4] 刘天佑, 高文利, 冯杰, 习宇飞, 欧洋. 井中三分量磁测的梯度张量欧拉反褶积及应用[J]. 物探与化探, 2013, 37(4): 633-639.
[5] 王明, 骆遥, 罗锋, 田嵩. 欧拉反褶积在重磁位场中应用与发展[J]. 物探与化探, 2012, 36(5): 834-841.
[6] 石磊, 郭良辉, 孟小红. 估计磁场源位置的倾斜角梯度算法改进[J]. 物探与化探, 2012, 36(2): 287-292.
[7] 王明, 郭志宏, 骆遥, 罗锋, 郭华, 屈进红. Tilt-Euler方法在位场数据处理及解释中的应用[J]. 物探与化探, 2012, 36(1): 126-132.
[8] 李占奎, 丁燕云. 大巴山推覆构造特征的探讨[J]. 物探与化探, 2007, 31(6): 495-498.
[9] 刘俊昌, 徐新学. 大地电磁测深资料 在思茅坳陷基底构造特征研究中的应用[J]. 物探与化探, 2007, 31(3): 193-197.
[10] 史辉,刘天佑,DawiMunaGhaboush. 利用欧拉反褶积法估计二度磁性体深度与位置[J]. 物探与化探, 2005, 29(3): 230-233.
[11] 王越胜, 王卫平. 山东黄河口地区航磁磁场特征与地下热水远景分析[J]. 物探与化探, 1999, 23(6): 421-427.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com