Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (1): 31-39    DOI: 10.11720/wtyht.2024.1047
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
高精度重磁方法寻找隐伏矽卡岩型铁矿
董健1,2(), 李肖鹏1,2(), 付超3, 党智财3, 赵晓博4, 曾庆斌1,2, 胡雪平1,2, 王金辉1,2
1.山东省地质调查院,山东 济南 250013
2.山东省土地质量地球化学与污染防治工程技术研究中心,山东 济南 250013
3.中国地质调查局 天津地质调查中心,天津 300170
4.中国冶金地质总局 山东正元地质勘查院,山东 济南 250013
Prospecting for concealed skarn iron deposits using the high-precision gravity-magnetic survey method
DONG Jian1,2(), LI Xiao-Peng1,2(), FU Chao3, DANG Zhi-Cai3, ZHAO Xiao-Bo4, ZENG Qing-Bin1,2, HU Xue-Ping1,2, WANG Jin-Hui1,2
1. Shandong Institute of Geological Survey, Jinan 250013, China
2. Shandong Technology Research Center of Land Quality Geochemistry and Pollution Prevention Engineering, Jinan 250013, China
3. Tianjin Center of China Geological Survey, Tianjin 300170, China
4. Geological Exploration Institute of Shandong Zhengyuan, China Metallurgical Geology Bureau, Jinan 250013, China
全文: PDF(7885 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

位于华北克拉通东部的鲁中莱芜地区是矽卡岩型富铁矿重要产区,矿床主要产于矿山岩体与中奥陶统碳酸盐岩地层的接触带中。本文利用最新重磁测量成果,对矿山岩体外围西部石家泉—刘家庙一带重磁异常特征进行了细致研究,结合区内已知铁矿重磁场特征,圈定了深部找矿靶区。在成矿有利地段布设了大比例尺重磁剖面,以已知钻孔为约束条件,利用2.5D重磁联合反演技术,对重磁异常进行了定性及定量解释。解释结果为后续钻孔位置布设及深度预测提供了依据,该钻孔揭露了15.8 m厚的富铁矿,找矿效果显著,为今后本区进一步寻找矽卡岩型铁矿提供了重要指示依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董健
李肖鹏
付超
党智财
赵晓博
曾庆斌
胡雪平
王金辉
关键词 莱芜地区布格重力异常航磁异常矽卡岩型铁矿2.5D重磁联合反演    
Abstract

The Laiwu area in central Shandong Province, situated in the eastern North China Craton, is a significant production area of skarn iron-rich ores. Its ore deposits occur primarily in the contact zone between the mining rock mass and the Middle Ordovician carbonate formation. Based on the latest areal gravity and magnetic survey results, this study thoroughly investigated the characteristics of gravity and magnetic anomalies along the Shijiaquan-Liujiamiao area in the western periphery of the mine rock mass. Then, this study delineated the deep prospecting target combining the characteristics of gravity and magnetic fields of the known iron deposits in the Laiwu area. Large-scale gravity and magnetic profiles were arranged in the favorable mineralization area. With the known boreholes as constraints, the gravity and magnetic anomalies were qualitatively and quantitatively interpreted using the 2.5D gravity-magnetic joint inversion technique. The interpretation results provide a basis for the location and depth of the borehole to be placed, which revealed a 15.8 m-thick iron-rich ore deposit, suggesting remarkable prospecting effects. This study holds critical indicative significance for further exploration of skarn iron ore deposits in this area.

Key wordsLaiwu area    Bouguer gravity anomaly    aeromagnetic anomaly    skarn iron deposit    2.5D gravity-magnetic joint inversion
收稿日期: 2023-02-06      修回日期: 2023-05-30      出版日期: 2024-02-20
ZTFLH:  P631.1  
基金资助:中国地质调查局项目(DD20221686)
通讯作者: 李肖鹏(1982-),男,高级工程师,主要从事地球物理研究工作。Email:95356313@qq.com
作者简介: 董健(1984-),男,高级工程师,主要从事地球物理研究工作。Email:215803290@qq.com
引用本文:   
董健, 李肖鹏, 付超, 党智财, 赵晓博, 曾庆斌, 胡雪平, 王金辉. 高精度重磁方法寻找隐伏矽卡岩型铁矿[J]. 物探与化探, 2024, 48(1): 31-39.
DONG Jian, LI Xiao-Peng, FU Chao, DANG Zhi-Cai, ZHAO Xiao-Bo, ZENG Qing-Bin, HU Xue-Ping, WANG Jin-Hui. Prospecting for concealed skarn iron deposits using the high-precision gravity-magnetic survey method. Geophysical and Geochemical Exploration, 2024, 48(1): 31-39.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1047      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I1/31
Fig.1  莱芜地区区域地质
岩层 密度σ
/(103kg
· m - 3)
磁化率κ
/(10-6
·4πSI)
剩磁Jr
/(10-3A
·m-1)
物性特征
第四系(黏土) 1.73 低密度、无磁性
石炭—二叠系(砂岩) 2.40 中等密度、无磁性
寒武—奥陶系(灰岩) 2.72 高密度、无磁性
中生代侵入岩
(闪长岩)
2.76 4400 700 高密度、中等磁性
矽卡岩 2.74 5346 8708 高密度、高磁性
磁铁矿 4.0 500000 213000 高密度、强磁性
Table 1  研究区岩(矿)石物性特征
Fig.2  莱芜地区布格重力异常
Fig.3  莱芜地区航磁化极异常
Fig.4  莱芜地区剩余重力异常
Fig.5  莱芜地区布格重力异常垂向二阶导数
Fig.6  石家泉—刘家庙剖面2.5D重磁联合反演推断
[1] 赵一鸣. 中国主要富铁矿床类型及地质特征[J]. 矿床地质, 2013, 32(4):686-705.
[1] Zhao Y M. Main genetic types and geological characteristics of iron-rich ore deposits in China[J]. Mineral Deposits, 2013, 32(4):686-705.
[2] 张招崇, 李厚民, 李建威, 等. 我国铁矿成矿背景与富铁矿成矿机制[J]. 中国科学:地球科学, 2021, 51(6):827-852.
[2] Zhang Z C, Li H M, Li J W, et al. Geological settings and metallogenesis of high-grade iron deposits in China[J]. Scientia Sinica:Terrae, 2021, 51(6):827-852.
doi: 10.1360/SSTe-2020-0184
[3] 段壮. 山东莱芜地区矽卡岩型铁矿床成矿作用与成矿机制研究[D]. 武汉: 中国地质大学(武汉), 2019:8-13.
[3] Duan Z. The mineralization and mechanism of the iron skarn deposits in Laiwu district,Shandong Province[D]. Wuhan: China University of Geosciences(Wuhan), 2019:8-13.
[4] 费详惠, 张招崇, 韩鎏. 山东张家洼矽卡岩型铁矿矿物学特征及其对成矿环境的指示意义[J]. 中国地质, 2014, 41(6):1873-1896.
[4] Fei X H, Zhang Z C, Han L. Mineralogy of the Zhangjiawa skarn iron deposit in Shandong Province and its implications for metallogenic environment[J]. Geology in China, 2014, 41(6):1873-1896.
[5] 郝兴中, 王巧云. 鲁中隆起区中北部矽卡岩型铁矿成矿预测[J]. 地质学刊, 2016, 40(3):443-449.
[5] Hao X Z, Wang Q Y. Metallogenic prediction of skarn iron deposits in the central and northern Luzhong uplift,East China[J]. Journal of Geology, 2016, 40(3):443-449.
doi: 10.1086/623964
[6] 耿安凯. 山东莱芜张家洼铁矿地质背景及矿床成因分析[J]. 世界有色金属, 2017(9):288-289.
[6] Geng A K. Geological background and ore genesis analysis of the depression iron deposit in Laiwu,Shandong[J]. World Nonferrous Metals, 2017(9):288-289.
[7] 宗信德, 李卫, 赵宏生, 等. 山东莱芜接触交代—热液铁矿多因素成矿及特征[J]. 地质与资源, 2011, 20(5):370-375.
[7] Zong X D, Li W, Zhao H S, et al. The contact metasomatic-hydrothermal iron deposit in Laiwu,Shandong Province:Multi-factor metallogenesis[J]. Geology and Resources, 2011, 20(5):370-375.
[8] 王云燕, 徐韶辉, 吴秉禄. 山东莱芜地区牛泉铁矿成矿地质特征及成因探讨[J]. 山东国土资源, 2021, 37(4):9-16.
[8] Wang Y Y, Xu S H, Wu B L. Geological characteristics and origin of Niuquan iron deposit in Laiwu area in Shandong Province[J]. Shandong Land and Resources, 2021, 37(4):9-16.
[9] 马明, 常洪华, 李亚东, 等. 淄博—莱芜地区矽卡岩型铁矿成矿规律和成矿模式探讨[J]. 山东国土资源, 2020, 36(7):9-15.
[9] Ma M, Chang H H, Li Y D, et al. Study on metallogenic regularity and metallogenic model of skarn type iron deposit in zibo-Laiwu area[J]. Shandong Land and Resources, 2020, 36(7):9-15.
[10] 陈应华, 蓝廷广, 王洪, 等. 莱芜张家洼铁矿磁铁矿LA-ICP-MS微量元素特征及其对成矿过程的制约[J]. 地学前缘, 2018, 25(4):32-49.
doi: 10.13745/j.esf.sf.2018.5.27
[10] Chen Y H, Lan T G, Wang H, et al. LA-ICP-MS trace element characteristics of magnetite from the Zhangjiawa iron deposit,Laiwu and constraints on metallogenic processes[J]. Earth Science Frontiers, 2018, 25(4):32-49.
[11] 宗信德, 徐建, 卢铁元, 等. 山东莱芜矿山矿田铁矿产出构造类型、矿体型式及大-大中型矿床赋存规律[J]. 地质找矿论丛, 2010, 25(3):234-240.
[11] Zong X D, Xu J, Lu T Y, et al. Stuctural types,ore body styles and occurrence pattern of large,large-medium iron deposits in Kuangshan iron ore field,Sandong Province[J]. Contributions to Geology and Mineral Resources Research, 2010, 25(3):234-240.
[12] 王润生, 郝兴中, 刘洪波, 等. 鲁西齐河地区矽卡岩型铁矿重磁方法找矿规律研究[J]. 地球物理学进展, 2022, 37(2):664-677.
[12] Wang R S, Hao X Z, Liu H B, et al. Study on prospecting law of skarn type iron deposit by gravity and magnetic method in Qihe area of western Shandong[J]. Progress in Geophysics, 2022, 37(2):664-677.
[13] 宋豪, 张义蜜, 王万银. 河南内黄—浚县一带重磁异常与深部磁铁矿靶区预测研究[J]. 物探与化探, 2019, 43(6):1191-1204.
[13] Song H, Zhang Y M, Wang W Y. The research on the prediction of gravity and magnetic anomalies and deep magnetite target areas in the Neihuang-Xunxian area of Henan Province[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1191-1204.
[14] 施兴, 彭朝晖, 王德启, 等. 重力勘查在寻找铁矿上的应用[J]. 物探与化探, 2012, 36(2):159-162.
[14] Shi X, Peng Z H, Wang D Q, et al. The application of gravity survey to iron deposit prospecting[J]. Geophysical and Geochemical Exploration, 2012, 36(2):159-162.
[15] 罗凡, 严加永, 付光明. 基于已知信息约束的重磁三维反演在深部磁铁矿勘查中的应用——以安徽泥河铁矿为例[J]. 物探与化探, 2018, 42(1):50-60.
[15] Luo F, Yan J Y, Fu G M. The application of gravity and magnetic three-dimensional inversion based on known information constraint in deep magnetite exploration:A case study of the Nihe iron deposit in Anhui Province[J]. Geophysical and Geochemical Exploration, 2018, 42(1):50-60.
[16] 邱光辉, 王海焦, 张海亮, 等. 重磁方法在程家村隐伏磁铁矿勘查中的应用[J]. 山东国土资源, 2016, 32(10):44-47,51.
[16] Qiu G H, Wang H J, Zhang H L, et al. Application of gravity and magnetic methods in prospecting buried magnetite deposit in Chengjiacun[J]. Shandong Land and Resources, 2016, 32(10):44-47,51.
[17] 赵敏, 盛勇, 戚良刚. 高精度重磁测量在覆盖区找矿中的应用——以无为县蔚山铁铜矿预查为例[J]. 物探与化探, 2019, 43(6):1211-1216.
[17] Zhao M, Sheng Y, Qi L G. The application of high precision gravity and magnetic survey to prospecting in coverage area:A case study of the reconnaissance of Weishan iron and copper deposit in Wuwei County[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1211-1216.
[1] 杨海, 徐学义, 熊盛青, 杨雪, 高卫宏, 范正国, 贾志业. 凤太矿集区航空地球物理异常特征及找矿方向[J]. 物探与化探, 2023, 47(5): 1157-1168.
[2] 安战锋, 贾志业, 王萌. 高精度航磁在辽宁瓦房店地区金刚石调查中的应用[J]. 物探与化探, 2022, 46(2): 337-343.
[3] 高维强, 史朝洋, 张利明, 冯旭亮. 山区地形改正密度逐次回归选取方法[J]. 物探与化探, 2021, 45(6): 1530-1538.
[4] 李靖, 王林飞, 闫浩飞. 基于Oracle数据库的航磁异常自动渲染技术[J]. 物探与化探, 2020, 44(1): 179-184.
[5] 杜发, 张秀萍, 毛立全, 胥溢, 张波. 航磁在阿尔金东段铌钽稀有金属找矿中的应用[J]. 物探与化探, 2018, 42(5): 902-908.
[6] 周子阳, 常树帅, 宁媛丽, 陈江源. 2.5D人机交互反演在航磁异常解释中的应用[J]. 物探与化探, 2016, 40(6): 1232-1236.
[7] 王少帅, 邓国武, 汪冰, 牛海威, 马密堂. 高精度磁测与激电测深在航磁异常查证中的应用[J]. 物探与化探, 2016, 40(5): 916-922.
[8] 蔡文军, 冯春圆, 倪卫冲, 沈正新, 房江奇, 邱崇涛, 杨金政, 祁程. 伊春地区铅锌多金属矿的航磁异常特征分析与研究[J]. 物探与化探, 2016, 40(5): 869-875.
[9] 严永邦, 王海鹏, 严鸿, 王昌勇, 王丽君. 青海夏日哈木岩浆熔离型铜镍硫化物矿床1:5万航磁异常特征及找矿意义[J]. 物探与化探, 2016, 40(2): 250-256.
[10] 刘椿, 任明君. 皖南屯溪地区重磁异常特征及找矿方向[J]. 物探与化探, 2015, 39(1): 35-40.
[11] 杨海, 葛良全, 熊盛青, 谷懿, 张庆贤. 一套基于X射线荧光测量的快速找矿方法[J]. 物探与化探, 2014, 38(4): 723-728.
[12] 王万银, 任飞龙, 王云鹏, 纪晓琳, 李建国, 李倩. 重力勘探在沉积型铝土矿床调查中的应用研究[J]. 物探与化探, 2014, (3): 409-416.
[13] 张科, 吕栋. 重震联合研究在磅逊盆地中的应用[J]. 物探与化探, 2013, 37(6): 983-987.
[14] 邵行来, 周耀明. 方向导数在重力梯度带异常解释中的应用[J]. 物探与化探, 2013, 37(6): 1023-1026.
[15] 张婉, 张强, 刘英会, 朱卫平, 佟晶. 冀东地区冷口断裂重磁异常特征及其地质作用[J]. 物探与化探, 2013, 37(5): 769-774.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com