Please wait a minute...
E-mail Alert Rss
 
物探与化探  2017, Vol. 41 Issue (5): 907-913    DOI: 10.11720/wtyht.2017.5.17
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于高精度字典学习算法的地震随机噪声压制
郭奇1, 2, 曾昭发1, 于晨霞1, 张思萌1
1.吉林大学 地球探测科学与技术学院,吉林 长春 130026;
2.中水东北勘测设计研究有限责任公司,吉林 长春 130062
Seismic random noise suppression based on the high-precision dictionary learning algorithm
GUO Qi1, 2, ZENG Zhao-Fa1, YU Chen-Xia1, ZHANG Si-Meng1
1.College of Geo-Exploration Science and Technology,Jilin University,Changchun 130026,China;
2.China Water Northeastern Investigation,Design &
Research Co. Ltd.,Changchun 130062,China;
全文: PDF(697 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 地震勘探中的随机噪声会对有效信号产生严重干扰,甚至会导致信号畸变。为了满足高精度的地震勘探要求,应用高精度字典学习算法压制随机噪声。该算法基于超完备稀疏表示理论,对传统的字典学习算法从字典训练和稀疏编码两个方面进行了改善:在字典训练阶段,保持支集完备的情况下,对字典进行循环更新,使字典更好地适应数据;在稀疏编码阶段,选用上一轮更新的部分大系数作为新一轮迭代的初始系数,充分利用大系数表示有效信号的特点。对理论数据和实际含噪地震资料的处理结果表明,与传统算法相比,高精度字典学习算法在去噪的同时能保护有效信息,明显改善去噪精度,对地震记录信噪比的提高有显著优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:In seismic exploration,the random noise severely distorts and interferes with seismic signals,and hence the denoising process is very important.In order to meet the high-precision requirement,the authors,based on the sparse and redundant representation theory,improve the dictionary update stage and the sparse coding stage in the conventional dictionary learning algorithm.While keeping the supports intact,the dictionary atoms are recurrently updated to adapt them to the specific seismic data.In the dictionary domain,large coefficients represent effective signals.Taking full advantage of this characteristic,the authors use several large coefficients from the last round of iteration as initial coefficients.In this way,the computational efficiency of the learning algorithm can be improved.The new algorithm is applied to synthetic and field seismic records and compared with the conventional K-SVD algorithm.The denoising results are satisfactory.It is shown that the new method can remove the random noise and protect the effective information at the same time.It is competitive in improving the signal-to-noise ratio of seismic records.
收稿日期: 2016-08-26      出版日期: 2017-10-20
:  P631.4  
作者简介: 郭奇(1987-),男,硕士研究生,主要研究方向为地震数据处理方法。
引用本文:   
郭奇, 曾昭发, 于晨霞, 张思萌. 基于高精度字典学习算法的地震随机噪声压制[J]. 物探与化探, 2017, 41(5): 907-913.
GUO Qi, ZENG Zhao-Fa, YU Chen-Xia, ZHANG Si-Meng. Seismic random noise suppression based on the high-precision dictionary learning algorithm. Geophysical and Geochemical Exploration, 2017, 41(5): 907-913.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2017.5.17      或      https://www.wutanyuhuatan.com/CN/Y2017/V41/I5/907
[1] 孙晶明.压缩感知中观测矩阵的研究[D].武汉:华中科技大学,2013.
[2] Yu L L.EEG de-noising based on wavelet transformation[C]//Proceedings of the 3 rd International Conference on—Bioinformatics and Biomedical Engineering.Beijing,China:IEEE,2009:1 4.
[3] 李雪英,张晶,孔祥琦,等.基于离散小波变换的地震资料自适应高频噪声压制[J].物探与化探,2013,37(1):165-170.
[4] 何柯,周丽萍,于宝利,等.基于补偿阈值的曲波变换地面微地震弱信号检测方法[J].物探与化探,2016,40(1):55-60.
[5] 刘国昌,陈小宏,郭志峰,等.基于Curvelet变换的缺失地震数据插值方法[J].石油地球物理勘探,2011,46(2):237-246.
[6] 薛永安,王勇,李红彩,等.改进的曲波变换及全变差联合去噪技术[J].物探与化探,2014,38(1):81-86.
[7] 刘成明,王德利,王通,等.基于Shearlet变换的地震随机噪声压制[J].石油学报,2014,35(4):692-699.
[8] 王德营,李振春,董烈乾.Shearlet域和TT域联合压制面波方法[J].石油地球物理勘探,2014,49(1):53-60.
[9] 路交通,曹思远,董建华,等.基于稀疏变换的地震数据重构方法[J].物探与化探,2013,37(1):175-179.
[10] Kelly S E.Gibbs phenomenon for wavelets[J].Applied and Computational Harmonic Analysis,1996,3(1):72-81.
[11] Elad M,Aharon M.Image denoising via learned dictionaries and sparse representation[C]//Proceedings of IEEE Computer Society Conference on Computer Vision & Pattern Recognition.New York,NY,USA:IEEE,2006,:895-900.
[12] Protter M,Elad M.Image sequence denoising via sparse and redundant representations[J].IEEE Transactions on Image Processing,2009,18(1):27-35.
[13] 蔡泽民,赖剑煌.一种基于超完备字典学习的图像去噪方法[J].电子学报,2009,37(2):347-350.
[14] Zhou Z,Luo L M.Research on image denoising algorithm based on adaptive overcomplete sparse representation theories[J].Journal of Convergence Information Technology,2012,7(16):315-321.
[15] 刘钢.基于压缩感知和稀疏表示理论的图像去噪研究[D].成都:电子科技大学,2013.
[16] Li M,Zhou G,Zhao B,et al.Radar HRRP adaptive denoising via sparse and redundant representations[C]//Proceedings of the International Symposium on Antennas & Propagation,Nanjing,China:IEEE,2013:1094-1097.
[17] Deka B,Bora P K.Removal of correlated speckle noise using sparse and overcomplete representations[J].Biomedical Signal Processing and Control,2013,8(6):520-533.
[18] 银壮辰.基于稀疏表示和字典学习的图像去噪研究[D].武汉:武汉理工大学,2014.
[19] Tang G,Ma J W,Yang H Z.Seismic data denoising based on learning-type over-complete dictionaries[J].Applied Geophysics,2012,9(1):27-32.
[20] 唐刚.基于压缩感知和稀疏表示的地震数据重建与去噪[D].清华大学,2010.
[21] Aharon M,Elad M,Bruckstein A. rmK -SVD:An algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322.
[22] Bryt O,Elad M.Compression of facial images using the K-SVD algorithm[J].Journal of Visual Communication and Image Representation,2008,19(4):270-282.
[23] 沈鸿雁.SVD地震波场分离与去噪技术在鄂尔多斯盆地地震资料处理中的应用[J].地球物理学进展,2012,27(5):2051-2058.
[24] 邵婕,孙成禹,唐杰,等.基于字典训练的小波域稀疏表示微地震去噪方法[J].石油地球物理勘探,2016,51(2):254-260.
[25] Pati Y C,Rezaiifar R,Krishnaprasad P S.Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[C]//Proceedings of the Twenty-Seventh Asilomar—Conference on Signals,Systems and Computers,Pacific Grove,CA:IEEE,1993:40-44.
[26] Mallat S G,Zhang Z.Matching pursuits with time-frequency dictionaries[J].IEEE Transactions on Signal Processing,1994,41(12):3397-3415.
[27] Smith L N,Elad M.Improving dictionary learning:uultiple dictionary updates and coefficient reuse[J].IEEE Signal Processing Letters,2013,20(1):79-82.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com