Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (5): 1258-1267    DOI: 10.11720/wtyht.2024.1489
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
银川盆地东缘上地壳电性结构特征及地热勘探方向
仵阳1(), 赵福元1(), 虎新军1,2, 陈晓晶1, 卜进兵1, 郭少鹏1
1.宁夏回族自治区地球物理地球化学调查院(自治区深地探测中心),宁夏 银川 750001
2.中国地质大学(武汉) 资源学院,湖北 武汉 430074
Electrical structure characteristics and geothermal exploration directions of the upper crust on the eastern margin of the Yinchuan Basin
WU Yang1(), ZHAO Fu-Yuan1(), HU Xin-Jun1,2, CHEN Xiao-Jing1, BU Jin-Bing1, GUO Shao-Peng1
1. Ningxia Geophysical and Geochemical Exploration Institute (Autonomous Regional Deep Earth Exploration Center), Yinchuan 750001, China
2. School of Earth Resources, China University of Geosciences (Wuhan), Wuhan 430074, China
全文: PDF(8811 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

随着银川盆地东缘地热井的成功实施,指明了围绕黄河断裂及其次级断裂寻找地热的新方向。为了进一步研究黄河断裂对银川盆地东缘地热资源的控制作用及缩小勘探靶区,共布设了 4 条 MT 测线,获得了71个测深点。通过对大地电磁测深资料进行预处理及二维反演,获得了研究区10 km以浅的二维电性结构。综合研究区以往地质、重力、微动、可控源音频大地电磁测深资料,对银川盆地东缘地层、断裂构造进一步解释,认为大地电磁测深测线所反映的奥陶系基底高阻内出现的相对低阻可能是黄河断裂后缘次级断裂发育部位,由奥陶系破碎充水所致,具有地热资源勘探的潜力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仵阳
赵福元
虎新军
陈晓晶
卜进兵
郭少鹏
关键词 银川盆地东缘电性结构地热勘探    
Abstract

The successful operation of geothermal wells on the eastern margin of the Yinchuan Basin suggests a new geothermal exploration orientation around the Huanghe fault and its secondary faults. To further investigate the controlling effect of the Huanghe fault on geothermal resources in the study area and pinpoint the exploration target, this study arranged four magnetotelluric (MT) lines, obtaining 71 survey points.The preprocessing and two-dimensional inversion of MT data yielded a two-dimensional electrical structure of the study area within a depth of 10 km.Based on the previous geological, gravity, microtremor, and controllable source audio magnetotellurics(CSAMT) data in the study area, this study further interpreted the strata and fault structures of the study area.It posited that the relatively-low-resistivity zone within the high-resistivity zone of the Ordovician basement reflected by the MT lines may be the secondary-fault development site at the rear edge of the Huanghe fault, which is caused by the fragmentation and water filling of Ordovician strata, showing certain exploration potential for geothermal resources.

Key wordseastern margin of the Yinchuan Basin    electrical structure    geothermal exploration
收稿日期: 2023-11-10      修回日期: 2023-12-12      出版日期: 2024-10-20
ZTFLH:  P631  
基金资助:宁夏自然科学基金项目(2022AAC03651);宁夏自然科学基金项目(2023AAC05066);2022年度宁夏回族自治区财政项目(NXCZ20220206);宁夏深部探测方法研究示范创新团队项目(KJT2019005)
通讯作者: 赵福元(1986-),男,高级工程师,主要从事地球物理勘查技术应用与研究工作。Email:zhao_fuyuan@163.com
作者简介: 仵阳(1985-),男,高级工程师,主要从事地球物理勘查技术应用与研究工作。Email:wuyang.2224@163.com
引用本文:   
仵阳, 赵福元, 虎新军, 陈晓晶, 卜进兵, 郭少鹏. 银川盆地东缘上地壳电性结构特征及地热勘探方向[J]. 物探与化探, 2024, 48(5): 1258-1267.
WU Yang, ZHAO Fu-Yuan, HU Xin-Jun, CHEN Xiao-Jing, BU Jin-Bing, GUO Shao-Peng. Electrical structure characteristics and geothermal exploration directions of the upper crust on the eastern margin of the Yinchuan Basin. Geophysical and Geochemical Exploration, 2024, 48(5): 1258-1267.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1489      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I5/1258
Fig.1  研究区区域位置及大地电磁测线位置
1—正断层;2—逆断层;3—平移断层;4—地名;5—MT测线;6—黄河;AB—阿拉善地块;YCB—银川盆地;OB—鄂尔多斯地块;TP—青藏高原;蓝色框代表研究区
Fig.2  研究区地质图及大地电磁测点位置
1—第四系;2—新近系;3—地质推断断裂;4—MT测点;5—典型MT测点;6—地名;7—地热孔;YCB—银川盆地;OB—鄂尔多斯地块
Fig.3  典型测点视电阻率和相位曲线
红色曲线—XY模式;蓝色曲线—YX模式
Fig.4  L1线构造维性分布云图
a—一维偏离度(S1D);b—二维偏离度(S2D);c—二维有效因子(e2D)
Fig.5  L1测线电性主轴统计成像结果
a—统计玫瑰图;b—频率分布云图;c—测点分布云图
Fig.6  TM模式视电阻率与相位的原始数据(a、c)响应数据(b、d)拟断面
Fig.7  MT二维反演电性结构模型
Fig.8  研究区地层综合解释成果
a—L1线;b—L2线;c—L3线;d—L4线
Fig.9  DRT-03孔测井综合解释成果
Fig.10  研究区断裂综合解释成果
a—研究区重力异常;b—L1线;c—L2线;d—L3线;e—L4线
[1] 赵红格, 刘池洋, 王锋, 等. 贺兰山隆升时限及其演化[J]. 中国科学:地球科学, 2007, 37(S1):185-192.
[1] Zhao H G, Liu C Y, Wang F, et al. Time limit and evolution of Helan Mountain uplift[J]. Scientia Sinica:Terrae, 2007, 37(S1):185-192.
[2] 柳忠泉. 银川盆地盆山转换及与贺兰山的耦合关系[J]. 合肥工业大学学报:自然科学版, 2014, 37(11):1366-1371.
[2] Liu Z Q. Basin-mountain conversion of Yinchuan Basin and its coupling relation to Helan Mountain[J]. Journal of Hefei University of Technology:Natural Science Edition, 2014, 37(11):1366-1371.
[3] 邓起东, 程绍平, 闵伟, 等. 鄂尔多斯块体新生代构造活动和动力学的讨论[J]. 地质力学学报, 1999, 5(3):13-21.
[3] Deng Q D, Cheng S P, Min W, et al. Discussion on Cenozoic tectonics and dynamics of Ordos Block[J]. Journal of Geomechanics, 1999, 5(3):13-21.
[4] 刘保金, 酆少英, 姬计法, 等. 贺兰山和银川盆地的岩石圈结构和断裂特征——深地震反射剖面结果[J]. 中国科学:地球科学, 2017, 47(2):179-190.
[4] Liu B J, Feng S Y, Ji J F, et al. Lithospheric structure and faulting characteristics of the Helan Mountains and Yinchuan Basin:Results of deep seismic reflection profiling[J]. Scientia Sinica:Terrae, 2017, 47(2):179-190.
[5] 陈一方, 陈九辉, 郭飚, 等. 鄂尔多斯西缘北段的地壳结构和块体间变形关系[J]. 地球物理学报, 2020, 63(3):886-896.
doi: 10.6038/cjg2020N0211
[5] Chen Y F, Chen J H, Guo B, et al. Crustal structure and deformation between different blocks in the northern part of the western margin of Ordos[J]. Chinese Journal of Geophysics, 2020, 63(3):886-896.
[6] 吴建平, 刘雅宁, 钟世军, 等. 鄂尔多斯块体及周边地区岩石圈结构的接收函数与面波联合反演研究[J]. 中国科学:地球科学, 2022, 52(8):1532-1546.
[6] Wu J P, Liu Y N, Zhong S J, et al. Lithospheric structure beneath Ordos Block and surrounding areas from joint inversion of receiver function and surface wave dispersion[J]. Scientia Sinica:Terrae, 2022, 52(8):1532-1546.
[7] 高翔, 郭飚, 陈九辉, 等. 地幔上涌对鄂尔多斯西缘岩石圈的改造:来自远震多尺度层析成像的证据[J]. 地球物理学报, 2018, 61(7):2736-2749.
doi: 10.6038/cjg2018L0319
[7] Gao X, Guo B, Chen J H, et al. Rebuilding of the lithosphere beneath the western margin of Ordos:Evidence from multiscale seismic tomography[J]. Chinese Journal of Geophysics, 2018, 61(7):2736-2749.
[8] 赵凌强, 孙翔宇, 詹艳, 等. 贺兰山—银川盆地三维深部电性结构特征及其地球动力学意义[J]. 中国科学:地球科学, 2023, 53(3):481-496.
[8] Zhao L Q, Sun X Y, Zhan Y, et al. Characteristics of the three-dimensional deep electrical structure in the Helan Mountains-Yinchuan Basin and its geodynamic implications[J]. Scientia Sinica:Terrae, 2023, 53(3):481-496.
[9] 陈晓晶, 虎新军, 李宁生, 等. 银川盆地东缘地热成藏模式探讨[J]. 物探与化探, 2021, 45(3):583-589.
[9] Chen X J, Hu X J, Li N S, et al. A discussion on geothermal accumulation model on the eastern margin of Yinchuan Basin[J]. Geophysical and Geochemical Exploration, 2021, 45(3):583-589.
[10] 肖骑彬, 蔡新平, 徐兴旺, 等. 应用大地电磁测深勘查北京平谷盆地隐伏含水岩溶系统的结构[J]. 吉林大学学报:地球科学版, 2004, 34(S1):60-64.
[10] Xiao J B, Cai X P, Xu X W, et al. Application of magnetotelluric sounding to explore the structure of concealed water-bearing Karst system in Pinggu Basin,Beijing[J]. Journal of Jilin University:Earth Science Edition, 2004, 34(S1):60-64.
[11] 赵凌强, 詹艳, 孙翔宇, 等. 利用大地电磁技术揭示2016年1月21日青海门源MS6.4地震隐伏地震构造和孕震环境[J]. 地球物理学报, 2019, 62(6):2088-2100.
doi: 10.6038/cjg2019M0204
[11] Zhao L Q, Zhan Y, Sun X Y, et al. The hidden seismogenic structure and dynamic environment of the 21 January Menyuan,Qinghai,MS6.4 earthquake derived from magnetotelluric imaging[J]. Chinese Journal of Geophysics, 2019, 62(6):2088-2100.
[12] 朱怀亮, 刘志龙, 曹学刚, 等. 银川盆地东缘地热资源勘探远景评价——基于大地电磁测深和钻探探测[J]. 地质与勘探, 2020, 56(6):1287-1295.
[12] Zhu H L, Liu Z L, Cao X G, et al. Exploration prospect of geothermal resources in the eastern margin of Yinchuan Basin:Magnetotelluric sounding and drilling confirmation[J]. Geology and Exploration, 2020, 56(6):1287-1295.
[13] 方盛明, 赵成彬, 柴炽章, 等. 银川断陷盆地地壳结构与构造的地震学证据[J]. 地球物理学报, 2009, 52(7):1768-1775.
[13] Fang S M, Zhao C B, Chai C Z, et al. Seismic evidence of crustal structures in the Yinchuan faulted basin[J]. Chinese Journal of Geophysics, 2009, 52(7):1768-1775.
[14] 黄兴富, 施炜, 李恒强, 等. 银川盆地新生代构造演化:来自银川盆地主边界断裂运动学的约束[J]. 地学前缘, 2013, 20(4):199-210.
[14] Huang X F, Shi W, Li H Q, et al. Cenozoic tectonic evolution of the Yinchuan Basin:Constraints from the deformation of its boundary faults[J]. Earth Science Frontiers, 2013, 20(4):199-210.
[15] Swift C M. A magnetotelluric investigation of an electrical conductivity anomaly in the Southwestern United States[D]. Massachusetts: Massachusetts Institute of Technology,1967.
[16] Bahr K. Geological noise in magnetotelluric data:A classification of distortion types[J]. Physics of the Earth and Planetary Interiors, 1991, 66(1/2):24-38.
[17] Groom R W, Bailey R C. Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion[J]. Journal of Geophysical Research, 94(B2):1913-1925.
[18] Caldwell T G, Bibby H M, Brown C. The magnetotelluric phase tensor[J]. Geophysical Journal International, 2004, 158(2):457-469.
[19] 蔡军涛, 陈小斌, 赵国泽. 大地电磁资料精细处理和二维反演解释技术研究(一)——阻抗张量分解与构造维性分析[J]. 地球物理学报, 2010, 53(10):2516-2526.
[19] Cai J T, Chen X B, Zhao G Z. Refined techniques for data processing and two-dimensional inversion in magnetotelluric Ⅰ:Tensor decomposition and dimensionality analysis[J]. Chinese Journal of Geophysics, 2010, 53(10):2516-2526.
[20] 蔡军涛, 陈小斌. 大地电磁资料精细处理和二维反演解释技术研究(二)——反演数据极化模式选择[J]. 地球物理学报, 2010, 53(11):2703-2714.
[20] Cai J T, Chen X B. Refined techniques for data processing and two-dimensional inversion in magnetotelluric Ⅱ:Which data polarization mode should be used in 2D inversion[J]. Chinese Journal of Geophysics, 2010, 53(11):2703-2714.
[21] 侯旭波, 尹克敏, 林中凯, 等. 银川盆地构造反转及其演化与叠合关系分析[J]. 高校地质学报, 2014, 20(2):277-285.
[21] Hou X B, Yin K M, Lin Z K, et al. The study of tectonic inversion,evolution and superposition of Yinchuan Basin[J]. Geological Journal of China Universities, 2014, 20(2):277-285.
[22] 李蒙. 鄂尔多斯西缘奥陶纪沉积与构造演化研究[D]. 西安: 西北大学, 2019.
[22] Li M. Analysis of sedimentary and tectonic evolution of the western margin of Ordos Area in Ordovician[D]. Xi’an: Northwest University, 2019.
[23] 侯旭波, 崔红庄, 郇玉龙. 银川盆地不同构造层构造样式及形成演化分析[J]. 东北石油大学学报, 2012, 36(6):28-33,7.
[23] Hou X B, Cui H Z, Huan Y L. Analysis of structural style and tectonic evolution in Yinchuan Basin[J]. Journal of Northeast Petroleum University, 2012, 36(6):28-33,7.
[24] 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7):1923-1937.
[24] Wang G L, Lin W J. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 2020, 94(7):1923-1937.
[25] 程国强. 宁夏黄河东岸天山海世界对流型地热资源赋存地质条件及补给特征研究[J]. 中国资源综合利用, 2022, 40(12):59-61.
[25] Cheng G Q. Study on the occurrence geological conditions and recharge characteristics of convective geothermal resources in the Tianshan Sea world on the east bank of the Yellow River in Ningxia[J]. China Resources Comprehensive Utilization, 2022, 40(12):59-61.
[26] 张薇, 王贵玲, 刘峰, 等. 中国沉积盆地型地热资源特征[J]. 中国地质, 2019, 46(2):255-268.
[26] Zhang W, Wang G L, Liu F, et al. Characteristics of geothermal resources in sedimentary basins[J]. Geology in China, 2019, 46(2):255-268.
[1] 朱将波, 汪启年, 刘玉泉, 官大维, 李涛, 尤淼, 张健. 蚌埠—淮北地区电性结构及地质意义[J]. 物探与化探, 2024, 48(4): 971-978.
[2] 王文杰, 陈磊, 雷聪聪, 石晓峰, 杨彪, 王文宝, 孙大鹏, 徐浩清. 内蒙古额济纳旗东北部雅干断裂带深部构造特征分析——来自大地电磁的证据[J]. 物探与化探, 2024, 48(3): 640-650.
[3] 郑浩, 崔月, 许璐, 齐鹏. 华南火成岩区深层地热勘探地震处理关键技术[J]. 物探与化探, 2024, 48(1): 88-97.
[4] 虎新军, 陈晓晶, 仵阳, 安百州, 倪萍. 综合地球物理技术在银川盆地东缘地热研究中的应用[J]. 物探与化探, 2022, 46(4): 845-853.
[5] 陈晓晶, 虎新军, 李宁生, 仵阳, 程国强, 倪萍, 曹园园, 卜进兵. 银川盆地东缘地热成藏模式探讨[J]. 物探与化探, 2021, 45(3): 583-589.
[6] 杨利普, 徐志萍, 徐顺强, 刘明军, 姜磊, 熊伟, 贺为民. 薄壁断裂峪河口至方庄段电性结构特征[J]. 物探与化探, 2020, 44(6): 1301-1305.
[7] 赵宝峰, 汪启年, 官大维. 带状热储地热田的地球物理场特征——以湖南省热水圩地热田为例[J]. 物探与化探, 2019, 43(4): 734-740.
[8] 徐玳笠, 唐宝山, 魏文博. 龙门山断裂带及其邻区电性结构特征[J]. 物探与化探, 2019, 43(1): 17-27.
[9] 孔志召. 太行山中段寺沟岩体电性结构分析及深部成矿预测[J]. 物探与化探, 2018, 42(5): 882-888.
[10] 黄高元, 张国鸿. CSAMT法张量与标量测量在已知铁矿区上的对比试验[J]. 物探与化探, 2014, 38(6): 1207-1211.
[11] 裴发根, 方慧, 袁永真, 仇根根, 白大为, 杜炳锐, 李立. MT成果数据管理系统在岩石圈电性结构研究中的应用——以东北地区为例[J]. 物探与化探, 2014, 38(4): 851-854.
[12] 张振宇, 王绪本, 方慧. 龙门山构造带中段大地电磁测深研究[J]. 物探与化探, 2012, 36(3): 377-381.
[13] 阴曼宁, 安存杰, 金玉洁. 综合物化探方法在内蒙古某地区地热勘探中的应用[J]. 物探与化探, 2007, 31(4): 313-316.
[14] 强建科, 李大心. 伽马能谱测量和米测温在地热调查中的应用[J]. 物探与化探, 2007, 31(4): 347-350.
[15] 李文尧, 廖忠. 瞬变电磁法在腾冲寻找地热中的应用[J]. 物探与化探, 2002, 26(5): 368-371.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com