Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (1): 24-30    DOI: 10.11720/wtyht.2024.1037
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
天然热释光测量技术在多年冻土区天然气水合物勘查中的应用
王惠艳1(), 唐瑞玲1(), 毕婧2
1.中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
2.山东省地质测绘院,山东 济南 250014
Application of natural thermoluminescence measurement technique in natural gas hydrate exploration in permafrost areas
WANG Hui-Yan1(), TANG Rui-Ling1(), BI Jing2
1. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
2. Shandong GEO-Surveying & Mapping Institute, Jinan 250014, China
全文: PDF(2704 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

冻土区天然气水合物形成机理复杂,成因多源,发展多种捕捉微渗漏信息技术,提高勘查成功率是亟需解决的难题。本文首次把天然热释光测量技术应用于冻土区天然气水合物勘查中,利用RGD-6型热释光剂量仪测试了祁连山冻土区土壤样品热释光强度,总结出适用于木里冻土区天然气水合物勘查的加热程序,以及样品取样粒级。试验结果表明,祁连山冻土区土壤样品最佳取样粒级为-60~100目,最佳升温速率应设置为5 ℃/s,最佳升温区间为50~400 ℃。根据祁连山冻土区土壤天然热释光强度异常特征,圈定了天然气水合物在地表的异常边界,天然热释光强度异常模式为顶部异常,与烃类异常模式存在良好的对应关系。土壤天然热释光不受微生物的影响,灵敏度高,是一种很有前景的寻找天然气水合物的方法,在今后的冻土区天然气水合物资源勘查过程中可以将这种技术加以推广。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王惠艳
唐瑞玲
毕婧
关键词 天然热释光粒级温度天然气水合物冻土区祁连山    
Abstract

Since natural gas hydrates (NGHs) in permafrost areas feature complex formation mechanisms and multiple sources, there is an urgent need to develop multiple techniques for micro-leakage information capture in order to increase the exploration success rate. This study applied the natural thermoluminescence measurement technique to NGH exploration in a permafrost area for the first time. Specifically, it tested the thermoluminescence intensity in soil samples from the Muli permafrost area of the Qilian Mountains using an RGD-6 thermoluminescent dosimeter. Then, it summarized the heating procedure for NGH exploration in the area, as well as size fractions for sampling. The results show that the soil samples from the Muli permafrost area demonstrated optimal size fractions for sampling ranging from -60~100 meshes, an optimal heating rate of 5 ℃/s, and an optimal heating range of 50~400 ℃. Based on the anomaly characteristics of the natural thermoluminescence intensity in soil samples, this study determined the anomaly boundary of NGHs on the surface of the permafrost area. It revealed that the natural thermoluminescence intensity displayed anomalies on the top, which correspond well to the hydrocarbon anomaly mode. The natural thermoluminescence measurements of soil, unaffected by microorganisms and boasting high sensitivity, can be popularized as a promising method for NGH explorations in permafrost areas.

Key wordsnatural thermoluminescence    size fraction    temperature    natural gas hydrate (NGH)    permafrost area    Qilian Mountains
收稿日期: 2023-01-30      修回日期: 2023-08-21      出版日期: 2024-02-20
ZTFLH:  P632  
基金资助:中央级公益性科研院所基本科研业务费专项(AS2015J01);中央级公益性科研院所基本科研业务费专项(AS2016Y01)
通讯作者: 唐瑞玲(1985-),女,硕士,高级工程师,毕业于成都理工大学,主要从事分析测试研究工作。Email:truiling@mail.cgs.gov.cn
作者简介: 王惠艳(1988-),女,硕士,工程师,毕业于中国地质大学(北京),主要从事油气地球化学和环境地球化学研究工作。Email:wanghuiyan@mail.cgs.gov.cn
引用本文:   
王惠艳, 唐瑞玲, 毕婧. 天然热释光测量技术在多年冻土区天然气水合物勘查中的应用[J]. 物探与化探, 2024, 48(1): 24-30.
WANG Hui-Yan, TANG Rui-Ling, BI Jing. Application of natural thermoluminescence measurement technique in natural gas hydrate exploration in permafrost areas. Geophysical and Geochemical Exploration, 2024, 48(1): 24-30.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1037      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I1/24
Fig.1  研究区位置示意(a)及采样点位分布(b)
Fig.2  不同粒级热释光强度变化曲线
Fig.3  不同升温区间热释光强度变化曲线
Fig.4  不同升温速率热释光强度变化曲线
指标 位置 最大值 最小值 平均值 异常衬值 异常面积/km2 NAP
酸解烃甲烷 全区 52.38 2.93 13.89
酸解烃重烃 全区 237.60 12.56 35.91
热释光 全区 974.25 3.89 141.63
水合物上方 974.25 49.96 351.46 2.45 0.84 2.06
Table 1  研究区土壤地球化学指标特征值
Fig.5  祁连山冻土区土壤热释光地球化学分布
Fig.6  祁连山冻土区土壤酸解烃甲烷地球化学分布
[1] Siegel F R, Hu D, Vaz J E, et al. Areal thermoluminescence radiometric survey of Shengping oil field using burie:Dosimeters[J]. Oil and Gas Journal, 1989, 3(1):53-57.
[2] Siegel F R, Chen R, Vaz J E, et al. The integrated radiation environment at well sites-An adjunct to petroleum exploration[J]. Oil and Gas Journal, 1997, 10(6):91-96.
[3] Wang Z, Qin D, Zhuang G, et al. Application of thermoluminescence dosimetry in the exploration for oil and gas-using chinese gr-200 lif (mg,cu,p) tld[J]. Radiation Protection Dosimetry, 1993, 47(1-4):323-326.
doi: 10.1093/oxfordjournals.rpd.a081760
[4] Zheng G, Kang Y. Thermoluminescence dating of jinniushan archaeological site[J]. Acta Anthropologica Sinica, 1994, 13:357-359.
[5] 王平, 熊盛青. 油气放射性勘查原理方法与应用[M]. 北京: 地质出版社, 1997:3-10.
[5] Wang P, Xiong S Q. Principles and application of radio active exploration for oil and gas[M]. Beijing: Geological Publishing House, 1997:3-10.
[6] Xie X J. Local and regional surface geochemical exploration for oil and gas[J]. Journal of Geochemical Exploration, 1992, 42:25-42.
doi: 10.1016/0375-6742(91)90059-4
[7] 郑公望. 热释光及其在石油勘探中的应用[J]. 石油勘探与开发, 1993, 20(4):49-51.
[7] Zheng G W. Thermoluminescence and its application in petroleum exploration[J]. Petroleum Exploration and Development, 1993, 20(4):49-51.
[8] Mckeever S W S. 固体热释光[M]. 蔡干钢,吴方,王所亭,译. 北京: 原子能出版社,1993.
[8] Mckeever S W S. Solid thermoluminescence[M].Translated by Cai G G,Wu F,Wang S T. Beijing: The Atomic Energy Press,1993.
[9] 张志攀, 祝有海, 苏新. 羌塘盆地沉积物热释光特征及潜在意义[J]. 现代地质, 2008, 22(3):452-456.
[9] Zhang Z P, Zhu Y H, Su X. Characteristics of thermoluminescence from sediments and its implications in the Qiangtang Basin,Qinghai-Tibet Plateau[J]. Geoscience, 2008, 22(3):452-456.
[10] 张志攀. 羌塘盆地天然气水合物勘察的酸解烃、热释光特征初探[D]. 北京: 中国地质大学(北京), 2006.
[10] Zhang Z P. A primary discussion in the character of acidolytical hydrocarbon and thermoluminescence related with gas hydrate in Qiangtang Basin[D]. Beijing: China University of Geosciences(Beijing), 2006.
[11] 张富贵, 王成文, 张舜尧, 等. 热释光:一种冻土区天然气水合物地球化学勘查新技术[J]. 现代地质, 2018, 32(5):1080-1088.
[11] Zhang F G, Wang C W, Zhang S Y, et al. Thermoluminescence:An new tool for natural gas hydrate exploration[J]. Geoscience, 2018, 32(5):1080-1088.
[12] 王南萍, 王平, 程业勋. 第四纪沉积物天然热释光测量勘查深部油气藏的方法原理及应用[J]. 现代地质, 1996, 10(4):543-549.
[12] Wang N P, Wang P, Cheng Y X. Principle of quaternary sediment natural thermoluminescence survey for prospecting oil reservoir and its application[J]. Geoscience, 1996, 10(4):543- 549.
[13] 王南萍, 王平, 侯胜利, 等. 第四纪沉积物天然热释光测量方法技术研究—山东草桥油田研究实例[J]. 地学前缘, 2003, 10(1):205-211.
[13] Wang N P, Wang P, Hou S L, et al. Measurement technique of natural themoluminescence of quaternary sediment and its application to prospecting of hydrocarbon reservoirs in Caoqiao oilfield,Shandong Province,East China[J]. Earth Science Frontiers, 2003, 10(1):205-211.
[14] 郑公望, 朱忠礼, 任秀生, 等. 热释光在油气勘查中的应用研究与进展[J]. 自然科学进展, 2003, 13(9):897-900.
[14] Zheng G W, Zhu Z L, Ren X S, et al. The application research progress of thermoluminescence technique to the oil and gas exploration[J]. Progress in Natural Science, 2003, 13(9):897-900.
[15] Zhang F, Yang Z, Zhou Y, et al. Accumulation mechanism of natural gas hydrate in the Qilian Mountain permafrost,Qinghai,China[J]. Front.Energy Res., 2022, 10:1006421.
[16] 周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.
[16] Zhou Y W, Guo D X, Qiu G Q, et al. Frozen ground of China[M]. Beijing: Science Press, 2000.
[17] 祝有海, 刘亚玲, 张永勤. 祁连山多年冻土区天然气水合物的形成条件[J]. 地质通报, 2006, 25(1):58-63.
[17] Zhu Y H, Liu Y L, Zhang Y Q. Formation conditions of gas hydrates in permafrost of the Qilian Mountains,Northwest China[J]. Geological Bulletin of China, 2006, 25(1):58-63.
[18] 王超群, 丁莹莹, 胡道功, 等. 祁连山冻土区DK-9孔温度监测及天然气水合物稳定带厚度[J]. 现代地质, 2017, 31(1):158-166.
[18] Wang C Q, Ding Y Y, Hu D G, et al. Temperature monitoring results for gas hydrate borehole DK-9 and thickness of gas hydrate stability zone in the Qilian Mountains permafrost[J]. Geoscience, 2017, 31(1):158-166.
[19] 祝有海, 张永勤, 文怀军, 等. 祁连山冻土区天然气水合物科学钻探工程概况[J]. 地质通报, 2011, 30(12):1816-1822.
[19] Zhu Y H, Zhang Y Q, Wen H J, et al. An overview of the scientific drilling project of gas hydrate in Qilian Mountain Permafrost,northwestern China[J]. Geological Bulletin of China, 2011, 30(12):1816-1822.
[20] 黄霞, 祝有海, 王平康, 等. 祁连山冻土区天然气水合物烃类气体组分的特征和成因[J]. 地质通报, 2011, 30(12):1851-1856.
[20] Huang X, Zhu Y H, Wang P K, et al. Hydrocarbon gas composition and origin of core gas from the gas hydrate reservoir in Qilian Mountain permafrost[J]. Geological Bulletin of China, 2011, 30(12):1851-1856.
[21] 张富贵, 秦爱华, 祝有海, 等. 祁连山冻土区天然气水合物地球化学迁移机理探讨[J]. 矿床地质, 2020, 39(2):326-336.
[21] Zhang F G, Qin A H, Zhu Y H, et al. A discussion on geochemical migration mechanism of natural gas hydrate in Qilian Mountain permafrost[J]. Mineral Deposits, 2020, 39(2):326-336.
[22] 周亚龙, 杨志斌, 张富贵, 等. 祁连山天然气水合物地球化学勘查方法稳定性和异常重现性分析[J]. 现代地质, 2019, 33(6):1314-1324.
[22] Zhou Y L, Yang Z B, Zhang F G, et al. The analysis of stability and abnormal reproducibility of geocheemical exploration of natural gas hydrate in Qilian Mountain[J]. Geoscience, 2019, 33(6):1314-1324.
[23] 孙忠军, 方慧, 刘建勋, 等. 祁连山冻土区三露天天然气水合物矿藏勘查模型[J]. 物探与化探, 2017, 41(6):998-1004.
[23] Sun Z J, Fang H, Liu J X, et al. An exploration model of gas hydrate in Sanlutian permafrost region,Qilian Mountain[J]. Geophysical and Geochemical Exploration, 2017, 41(6):998-1004.
[1] 连晟, 程正璞, 罗旋, 李敬杰, 田蒲源. 基于岩石物性引导的地球物理联合反演研究[J]. 物探与化探, 2023, 47(6): 1580-1587.
[2] 保善东, 谢祥镭, 王亚栋, 徐云甫, 张新远, 曾彪. 寒冷半干旱草原景观大比例尺微沟系测量样品粒级试验——以锲墨格山锂铍稀有矿为例[J]. 物探与化探, 2023, 47(3): 648-658.
[3] 王英梅, 焦雯泽, 刘生浩, 王茜, 宋瀚宇. 含天然气水合物沉积物的电阻率特性及阿尔奇公式的应用进展[J]. 物探与化探, 2023, 47(3): 782-793.
[4] 王辉, 付书计, 葛帅寅, 马方圆, 宋宝家, 罗景程. 免维护超低噪声固体不极化电极的研制与性能测试[J]. 物探与化探, 2022, 46(3): 714-721.
[5] 杨志斌, 周亚龙, 张富贵, 张舜尧, 孙忠军. 中国陆域冻土区浅表烃类地球化学特征及其成因分析[J]. 物探与化探, 2022, 46(3): 628-636.
[6] 石晓今, 李嫄嫄, 黄贤龙. 天津滨海新区深部地热流体水文地球化学特征[J]. 物探与化探, 2022, 46(2): 316-322.
[7] 沙志彬, 万晓明, 赵忠泉, 梁金强, 杨瑞召, 白钰, 柴祎. 叠前同时反演技术在珠江口盆地西部海域天然气水合物储层预测中的应用[J]. 物探与化探, 2019, 43(3): 476-485.
[8] 付康伟, 张学强, 彭炎. BP神经网络算法在陆域天然气水合物成藏预测中的应用[J]. 物探与化探, 2019, 43(3): 486-493.
[9] 杜鹏, 刘晓玲, 徐新战, 常镪, 付连红. 利用温度检测钻孔灌注桩混凝土拌合物面的研究[J]. 物探与化探, 2019, 43(3): 667-671.
[10] 张富贵, 周亚龙, 张舜尧, 唐瑞玲, 王惠艳, 孙忠军. 热释汞:一种冻土区天然气水合物地球化学勘查新技术[J]. 物探与化探, 2019, 43(2): 329-337.
[11] 孙春岩, 王栋琳, 张仕强, 贺会策, 赵浩, 凌帆, 尹文斌. 深海甲烷电化学原位长期监测技术及其在海洋环境调查和天然气水合物勘探中的意义[J]. 物探与化探, 2019, 43(1): 1-16.
[12] 李洋, 刘东明, 林振洲, 王宇航, 贾定宇, 欧洋. 木里地区水合物钻孔井壁构造裂缝特征[J]. 物探与化探, 2019, 43(1): 84-89.
[13] 唐世新, 李建军, 马生明. 内蒙古东部运积物覆盖区地球化学勘查方法对比[J]. 物探与化探, 2018, 42(3): 499-505.
[14] 葛志广, 陈永生, 周小仙. 漠河冻土带天然气水合物地震采集关键技术[J]. 物探与化探, 2018, 42(2): 285-291.
[15] 李春亮, 张炜. 甘肃省祁连山西段地球化学分区及其特征[J]. 物探与化探, 2018, 42(2): 312-315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com