Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (3): 812-819    DOI: 10.11720/wtyht.2024.1211
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于生成对抗网络的半航空瞬变电磁噪声数据扩充方法
冯威1(), 冯浩2, 肖立江1, 陈品明1, 刘东2,3, 王用鑫2,4(), 周小生2,3, 孙怀凤2, 王震2,5
1.浙江交工集团股份有限公司,浙江 杭州 310000
2.山东大学 岩土工程中心,山东 济南 250061
3.广西交通 投资交通有限公司,广西 南宁 530022
4.山东省交通规划设计院集团有限公司,山东 济南 250101
5.山东大学 北京研究院,北京 100873
A data augmentation method for semi-airborne transient electromagnetic noise based on a generative adversarial network
FENG Wei1(), FENG Hao2, XIAO Li-Jiang1, CHEN Pin-Ming1, LIU Dong2,3, WANG Yong-Xin2,4(), ZHOU Xiao-Sheng2,3, SUN Huai-Feng2, WANG Zhen2,5
1. Zhejiang Communications Construction Group Co., Ltd., Hangzhou 310000, China
2. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, China
3. Guangxi Communications Investment Group Corporation Ltd., Nanning 530022, China
4. Shandong Provincial Communications Planning and Design Institute Group Co., Ltd., Jinan 250101, China
5. Beijing Research Institute of Shandong University, Beijing 100873, China
全文: PDF(3533 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

半航空瞬变电磁噪声数据形式复杂,获取成本高、数据量稀缺,难以通过传统的扩充方法进行数据扩充,极大地影响了后续降噪工作的开展。针对这个问题,本研究提出了基于生成对抗网络的半航空瞬变电磁信号数据扩充方法,通过将生成器设计为LSTM网络,基于实采噪声数据集,进行生成器与判别器模型的训练,成功获取了可以生成仿真噪声数据的生成器模型,之后分析了生成器生成的仿真噪声与实采噪声的分布,并且对比了扩充前后降噪网络的表现,验证了本方法对于半航空瞬变电磁实采噪声数据的扩充是真实有效的。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯威
冯浩
肖立江
陈品明
刘东
王用鑫
周小生
孙怀凤
王震
关键词 半航空瞬变电磁生成对抗网络实采噪声数据扩充    
Abstract

The semi-airborne transient electromagnetic (SATEM) noise data, exhibiting intricate forms, high acquisition costs, and small volumes, cannot be augmented using conventional augmentation methods, thus significantly hindering the subsequent denoising work. Hence, this study proposed a data augmentation method for SATEM signals based on the generative adversarial network (GAN). By designing the generator as a long short-term memory (LSTM) network and training the generator and discriminator models based on the dataset of real-measured SATEM noise, this study obtained a generator model that can generate simulated noise data. Then, this study analyzed the distributions of the simulated noise generated by the generator and the real-measured noise. Moreover, this study compared the performance of the denoising network before and after augmentation, demonstrating the effectiveness of this method for augmenting real-measured SATEM noise data.

Key wordssemi-airborne transient electromagnetics    generative adversarial network    real-measured noise    data augmentation
收稿日期: 2023-05-22      修回日期: 2023-06-29      出版日期: 2024-06-20
ZTFLH:  P631  
基金资助:广西重点研发计划(桂科AB22080010);国家自然科学基金面上项目(42074145)
通讯作者: 王用鑫(1996-),男,2022年毕业于山东大学,主要从事公路隧道勘查、设计相关工作。Email:626135776@qq.com
作者简介: 冯威(1987-),男,2009年毕业于长沙理工大学,主要从事公路隧道勘查与施工相关的工作。Email:304641395@qq.com
引用本文:   
冯威, 冯浩, 肖立江, 陈品明, 刘东, 王用鑫, 周小生, 孙怀凤, 王震. 基于生成对抗网络的半航空瞬变电磁噪声数据扩充方法[J]. 物探与化探, 2024, 48(3): 812-819.
FENG Wei, FENG Hao, XIAO Li-Jiang, CHEN Pin-Ming, LIU Dong, WANG Yong-Xin, ZHOU Xiao-Sheng, SUN Huai-Feng, WANG Zhen. A data augmentation method for semi-airborne transient electromagnetic noise based on a generative adversarial network. Geophysical and Geochemical Exploration, 2024, 48(3): 812-819.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1211      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I3/812
Fig.1  生成对抗网络结构示意图
Fig.2  LSTM单元结构示意
Fig.3  生成器G结构示意
Fig.4  单采样点噪声数据
Fig.5  单周期噪声数据
实验环境 参数配置
操作系统 Windows 10
编程环境 python 3.6.13
深度学习框架 tensorflow-gpu 1.15.0
CPU型号 AMD Ryzen 7 5800 8-Core Processor
@3.40 GHz,16.0 GB RAM
CUDA版本 CUDA 10.0
GPU型号 NVIDIA GeForce GTX1650
Table 1  实验环境
Fig.6  实采噪声(左)与仿真噪声(右)数据形态
Fig.7  真实噪声数据与仿真噪声数据高斯分布
Fig.8  含噪合成数据降噪前后信噪比及相关系数分布
a—降噪前数据信噪比及相关系数分布;b—降噪后数据信噪比及相关系数分布(未使用扩充数据);c—降噪后数据信噪比及相关系数分布(使用扩充数据);d—使用与未使用扩充数据结果差值
[1] 李术才, 刘斌, 孙怀凤, 等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报, 2014, 33(6):1090-1113.
[1] Li S C, Liu B, Sun H F, et al. State of art and trends of advanced geological prediction in tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6):1090-1113.
[2] 李术才, 李树忱, 张庆松, 等. 岩溶裂隙水与不良地质情况超前预报研究[J]. 岩石力学与工程学报, 2007, 26(2):217-225.
[2] Li S C, Li S C, Zhang Q S, et al. Forecast of Karst-fractured groundwater and defective geological conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(2):217-225.
[3] Nabighian M N. Electromagnetic methods in applied geophysics[M]. Tulsa: Society of Exploration Geophysicists,1988.
[4] Sun H F, Zhang N Y, Li D R, et al. The first semi-airborne transient electromagnetic survey for tunnel investigation in very complex terrain areas[J]. Tunnelling and Underground Space Technology, 2023,132:104893.
[5] Zhu W Q, Mousavi S M, Beroza G C. Seismic signal denoising and decomposition using deep neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):9476-9488.
[6] 董新桐, 钟铁, 王洪洲, 等. 基于卷积对抗降噪网络的塔里木盆地沙漠地震资料消噪方法研究[J]. 地球物理学报, 2022, 65(7):2661-2672.
[6] Dong X T, Zhong T, Wang H Z, et al. The denoising of desert seismic data acquired from Tarim Basin based on convolutional adversarial denoising network[J]. Chinese Journal of Geophysics, 2022, 65(7):2661-2672.
[7] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE:Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002,16:321-357.
[8] Shorten C, Khoshgoftaar T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1):60.
[9] Lee S G, Hwang U, Min S, et al. Polyphonic music generation with sequence generative adversarial networks[EB/OL]. 2017:arXiv:1710.11418. http://arxiv.org/abs/1710.11418
[10] 王艳红. 基于生成对抗神经网络的心电数据增强算法研究[D]. 北京: 北京邮电大学, 2020.
[10] Wang Y H. Research on ECG data enhancement algorithm based on generative adversarial neural network[D]. Beijing: Beijing University of Posts and Telecommunications, 2020.
[11] 丁斌, 夏雪, 梁雪峰. 基于深度生成对抗网络的海杂波数据增强方法[J]. 电子与信息学报, 2021, 43(7):1985-1991.
[11] Ding B, Xia X, Liang X F. Sea clutter data augmentation method based on deep generative adversarial network[J]. Journal of Electronics & Information Technology, 2021, 43(7):1985-1991.
[12] Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014.
[13] 赵树阳, 李建武. 基于生成对抗网络的低秩图像生成方法[J]. 自动化学报, 2018, 44(5):829-839.
[13] Zhao S Y, Li J W. Generative adversarial network for generating low-rank images[J]. Acta Automatica Sinica, 2018, 44(5):829-839.
[14] 孙钰, 李林燕, 叶子寒, 等. 多层次结构生成对抗网络的文本生成图像方法[J]. 计算机应用, 2019, 39(11):3204-3209.
doi: 10.11772/j.issn.1001-9081.2019051077
[14] Sun Y, Li L Y, Ye Z H, et al. Text-to-image synthesis method based on multi-level structure generative adversarial networks[J]. Journal of Computer Applications, 2019, 39(11):3204-3209.
doi: 10.11772/j.issn.1001-9081.2019051077
[15] 孙晓, 丁小龙. 基于生成对抗网络的人脸表情数据增强方法[J]. 计算机工程与应用, 2020, 56(4):115-121.
doi: 10.3778/j.issn.1002-8331.1904-0309
[15] Sun X, Ding X L. Data augmentation method based on generative adversarial networks for facial expression recognition sets[J]. Computer Engineering and Applications, 2020, 56(4):115-121.
doi: 10.3778/j.issn.1002-8331.1904-0309
[16] Arjovsky M, Chintala S, Bottou L. Wasserstein Generative Adversarial Networks[C]// 31st Annual Conference on Neural Information Processing Systems (NIPS), 2017.
[17] Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of Wasserstein GANs[J]. Neural Information Processing Syatems,2017:1-20.
[18] 杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2):1-6,26.
[18] Yang L, Wu Y Q, Wang J L, et al. A survey of research on circulatory neural network[J]. Journal of Computer Applications, 2018, 38(S2):1-6,26.
[19] Yang L, Wu Y X, Wang J L, et al. Research on recurrent neural network[J]. Journal of Computer Applications, 2018, 38(S2):1-6,26.
[20] 陈成栋. 半航空瞬变电磁数据采集设计和数据校正研究[D]. 济南: 山东大学, 2021.
[20] Chen C D. Study of data acquisition design and data correction research for semi-airborne transient electromagnetics[D]. Jinan: Shandong University, 2021.
[1] 王仕兴, 何可, 尹小康, 魏栋华, 赵思为, 郭明. 半航空瞬变电磁一维聚焦反演研究[J]. 物探与化探, 2023, 47(2): 410-419.
[2] 张莹莹. 带约束的多辐射场源半航空瞬变电磁一维自适应正则化反演方法[J]. 物探与化探, 2022, 46(2): 424-432.
[3] 何可, 郭明, 胡章荣, 易国财, 王仕兴. 半航空瞬变电磁L1范数自适应正则化反演[J]. 物探与化探, 2021, 45(5): 1338-1346.
[4] 张莹莹. 多辐射场源半航空瞬变电磁法多分量响应特征分析[J]. 物探与化探, 2021, 45(1): 102-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com