Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (3): 675-683    DOI: 10.11720/wtyht.2024.1428
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
辽东郑屯地区基于广域电磁法的深孔验证
梁维天1(), 李帝铨2,3(), 孙新胜1, 王东波1, 冯家新1, 李浩1, 樊金虎1
1.辽宁省第五地质大队有限责任公司,辽宁 营口 115100
2.中南大学 有色金属成矿预测与地质环境监测教育部重点实验室,湖南 长沙 410083
3.中南大学 地球科学与信息物理学院,湖南 长沙 410083
Deep-hole verification of wide-field electromagnetic method-derived results in the Zhengtun area of the Liaodong region
LIANG Wei-Tian1(), LI Di-Quan2,3(), SUN Xin-Sheng1, WANG Dong-Bo1, FENG Jia-Xin1, LI Hao1, FAN Jin-Hu1
1. Liaoning Fifth Geological Brigade Co., Ltd., Yingkou 115100, China
2. Key Laboratory of Metallogenic Prediction of Non-Ferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, China
3. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
全文: PDF(5860 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

辽东金矿床的发育被认为受变质核杂岩体系叠加拆离断层带控制,传统观点判定永宁盆地永宁组盖层厚度达到几千米以上,阻碍含矿流体的运移的同时,不利于形成大规模金属矿床。辽东地区矿床深部探测投入少、研究程度低,勘查探测深度长期局限于1 km以内。本文在郑屯地区采用广域电磁法获得了3 km以浅的电阻率分布特征,厘清了辽东盖层厚度为千米左右,突破了对永宁组巨厚盖层的传统认识;进一步施工2 km深钻开展验证,在孔深1 345 m处发现永宁组地层与下伏太古宙基底呈不整合接触关系,界面附近未见明显的构造拆离迹象。本研究证实永宁盆地盖层厚度仅为千米左右,结合区内多期活动断裂构造和密集分布的浅成岩脉群,初步判定永宁盆地的成矿地质背景类似胶东金矿集区,推测存在华北克拉通破坏时期含矿变质流体或岩浆热液运移至界面上部成矿的可能。辽东地区具有实现多金属找矿突破的潜力,广域电磁法勘探为深地成矿预测指明了方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁维天
李帝铨
孙新胜
王东波
冯家新
李浩
樊金虎
关键词 华北克拉通辽东盖层广域电磁法深钻    
Abstract

The development of gold deposits in the Liaodong region is considered to be controlled by the superimposed detachment fault zone of the metamorphic core complex system. The traditional view holds that the thickness of the cap rocks of the Yongning Formation in the Yongning Basin can exceed thousands of meters, thus hindering the migration of ore-bearing fluids and the formation of large-scale metal deposits. The exploration of deposits in the Liaodong region has remained within a depth of 1 km due to limited exploration efforts and insufficient research. This study obtained the resistivity distribution characteristics within a depth of 3 km in the Zhengtun area using the wide-field electromagnetic method (WFEM), ascertaining that the thickness of the cap rocks in the Liaodong region is around 1 km, in sharp contrast to the extremely thick cap rocks in the Yongning Formation. As verified by the 2 km deep drilling, an unconformable contact between the Yongning Formation and the underlying Archean basement was observed at a hole depth of 1 345 m, without significant structural detachment near the boundary. This study demonstrates that the thickness of the cap rocks in the Yongning Basin is merely around 1 km. Considering multistage active fault structures and densely distributed hypabyssal rock vein swarms in the area, it is preliminarily determined that the geological setting for mineralization in the Yongning Basin is akin to that of the Jiaodong gold ore concentration area. The ore-bearing metamorphic fluids or magmatic-hydrothermal fluids might have migrated to the upper part of the boundary for mineralization during the destruction of the North China craton. Overall, the Liaodong region has the potential to achieve breakthroughs in polymetallic prospecting, and the WFEM pinpoints the deep mineralization prediction.

Key wordsNorth China craton    Liaodong    cap rock    wide-field electromagnetic method (WFEM)    deep drilling
收稿日期: 2023-10-13      修回日期: 2023-12-07      出版日期: 2024-06-20
ZTFLH:  P631  
基金资助:辽宁省2020年财政出资项目(JH20-210000-05760)
通讯作者: 李帝铨(1982-),男,教授,从事矿产资源电磁法探测理论与技术研究工作。Email:lidiquan@126.com
作者简介: 梁维天(1984-),男,高级工程师,长期从事地质矿产、地球物理勘查及研究工作。Email:15009869686@163.com
引用本文:   
梁维天, 李帝铨, 孙新胜, 王东波, 冯家新, 李浩, 樊金虎. 辽东郑屯地区基于广域电磁法的深孔验证[J]. 物探与化探, 2024, 48(3): 675-683.
LIANG Wei-Tian, LI Di-Quan, SUN Xin-Sheng, WANG Dong-Bo, FENG Jia-Xin, LI Hao, FAN Jin-Hu. Deep-hole verification of wide-field electromagnetic method-derived results in the Zhengtun area of the Liaodong region. Geophysical and Geochemical Exploration, 2024, 48(3): 675-683.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1428      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I3/675
Fig.1  工作区大地构造简图(孙晓猛等[7],朱日祥等[6])
岩性 样本数/块 幅频率
平均值/%
电阻率
平均值/(Ω·m)
花岗斑岩 35 1.8 5422.6
闪长玢岩 35 1.4 4698.7
长石砂岩 40 1.2 4428.5
砂砾岩 35 1.5 2045.6
闪长岩体 35 1.6 11246.3
矿化岩脉体 30 10.5 565.6
Table 1  工作区岩石电性参数统计
Fig.2  工程布置地质简图
Fig.3  广域电场与天然场对比
Fig.4  L1线广域电磁剖面(a)及大深度激电(b)综合分析结果
Fig.5  盖层与基底接触面柱状图
Fig.6  岩矿石标本与镜下照片
a—地表金矿化蚀变带内多金属硫化物细脉;b—120 m深度含金构造蚀变岩带岩心照片;c—1 400 m深度含金构造蚀变岩带岩心照片
Fig.7  钻孔验证地球化学测量R型聚类分析
Fig.8  郑屯地区成矿模式
a—成矿模式示意; b—局部实测地质剖面
[1] 刘福来, 刘平华, 王舫, 等. 胶—辽—吉古元古代造山-活动带巨量变沉积岩系的研究进展[J]. 岩石学报, 2015, 31(10):2816-2846.
[1] Liu F L, Liu P H, Wang F, et al. Progresses and overviews of voluminous meta-sedimentary series within the Paleoproterozoic Jiao-Liao-Ji orogenic-mobile belt,North China Craton[J]. Acta Petrologica Sinica, 2015, 31(10) :2816-2846.
[2] Yang L Q, Deng J, Guo L N, et al. Origin and evolution of ore fluid,and gold-deposition processes at the giant Taishang gold deposit,Jiaodong Peninsula,Eastern China[J]. Ore Geology Reviews, 2016,72:585-602.
[3] Wen B, Fan H, Santosh M, et al. Genesis of two different types of gold mineralization in the Linglong gold field,China:Constrains from geology,fluid inclusions and stable isotope[J]. Ore Geology Reviews, 2015,65:643-658.
[4] 张秋生. 辽东半岛早期地壳与矿床[M]. 北京: 地质出版社,1988.
[4] Zhang Q S. Early crust and mineral deposits in Liaodong Peninsula[M]. Beijing: Geological Publishing House,1988.
[5] 朱日祥, 郑天愉. 华北克拉通破坏机制与古元古代板块构造体系[J]. 科学通报, 2009, 54(14):1950-1961.
[5] Zhu R X, Zheng T Y. Failure mechanism of North China Craton and Paleoproterozoic plate tectonic system[J]. China Science Bulletin, 2009, 54 (14):1950-1961.
[6] 朱日祥, 范宏瑞, 李建威, 等. 克拉通破坏型金矿床[J]. 中国科学:地球科学, 2015, 45(8):1153-1168,1-4.
[6] Zhu R X, Fan H R, Li J W, et al. Decratonic gold deposits[J]. Scientia Sinica:Terrae, 2015, 45(8):1153-1168,1-4.
[7] 孙晓猛, 王书琴, 王英德, 等. 郯庐断裂带北段构造特征及构造演化序列[J]. 岩石学报, 2010, 26(1):165-176.
[7] Sun X M, Wang S Q, Wang Y D, et al. Structural characteristics and tectonic evolution sequence of the northern segment of Tanlu fault zone[J]. Acta Petrologica Sinica, 2010, 26(1):165-176.
[8] 陈衍景, 翟明国, 蒋少涌. 华北大陆边缘造山过程与成矿研究的重要进展和问题[J]. 岩石学报, 2009, 25(11):2695-2726.
[8] Chen Y J, Zhai M G, Jiang S Y. Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent[J]. Acta petrologica Sinica, 2009, 25 (11):2695-2726.
[9] 付海涛. 辽宁省瓦房店地区金刚石原生矿找矿信息研究[J]. 地质找矿论丛, 2005, 20(4):281-285,290.
[9] Fu H T. Study on the primary diamond ore search information for Wafangdian Area,Liaoning Province[J]. Contributions to Geology and Mineral Resources Research, 2005, 20(4):281-285,290.
[10] 朱志澄. 伸展构造和拆离断层[J]. 地质科技情报, 1987, 6(1):18-25.
[10] Zhu Z C. Extensional structure and detachment fault[J]. Geological science and technology information, 1987, 6(1):18-25.
[11] 朱志澄. 变质核杂岩和伸展构造研究述评[J]. 地质科技情报, 1994, 13(3):1-8.
[11] Zhu Z C. Review on metamorphic core complex and extensional structures[J]. Bulletin of Geological Science and Technology, 1994, 13(3):1-8.
[12] 纪沫, 胡玲, 刘俊来, 等. 辽南变质核杂岩主拆离断层的波瓦状构造(corrugation)及其成因[J]. 地质科学, 2008, 43(1):12-22,49.
[12] Ji M, Hu L, Liu J L, et al. Features and mechanism of corrugation structure in the Liaonan (southern Liaoning) metamorphic core complex[J]. Chinese Journal of Geology:Scientia Geologica Sinica, 2008, 43(1):12-22,49.
[13] 刘俊来, 纪沫, 申亮, 等. 辽东半岛早白垩世伸展构造组合、形成时代及区域构造内涵[J]. 中国科学:地球科学, 2011, 41(5):618-637.
[13] Liu J L, Ji M, Shen L, et al. Early Cretaceous extensional tectonic assemblage,formation age and regional tectonic connotation of Liaodong Peninsula[J]. Scientia Sinica:Terrae, 2011, 41(5):618-637.
[14] 解洪晶, 王玉往, 李德东, 等. 辽东青城子矿集区双顶沟岩体年代学及地球化学研究[J]. 地质学报, 2018, 92(6):1264-1279.
[14] Xie H J, Wang Y W, Li D D, et al. Geochronology and geochemistry study of the shuangdinggou intrusion in the qingchengzi ore concentration area,eastern Liaoning Province[J]. Acta Geologica Sinica, 2018, 92(6):1264-1279.
[15] 杨凤超, 宋运红, 张朋, 等. 辽宁青城子矿集区金银矿成矿流体特征和成矿物质来源示踪[J]. 地质学报, 2016, 90(10):2775-2789.
[15] Yang F C, Song Y H, Zhang P, et al. Forming fluid characteristics and tracing of ore-forming source materials of gold-silver deposit in the Qingchengzi ore concentration area[J]. Acta Geologicas Sinica, 2016, 90 (10):2775-2789.
[16] 何继善. 广域电磁测深法研究[J]. 中南大学学报:自然科学版, 2010, 41(3):1065-1072.
[16] He J S. Wide field electromagnetic sounding methods[J]. Journal of Central South University:Science and Technology, 2010, 41(3):1065-1072.
[17] 李帝铨, 谢维, 程党性. E-Ex广域电磁法三维数值模拟[J]. 中国有色金属学报, 2013, 23(9):2459-2470.
[17] Li D Q, Xie W, Cheng D X. Three dimensional modeling for E-Ex wide field electromagnetic methods[J]. The Chinese Journal of nonferrous metals, 2013, 23(9):2459-2470.
[18] 邓锋华, 杨洋, 李帝铨. 广域电磁法在隐伏金矿中的应用[J]. 工程地球物理学报, 2013, 10(3):357-362.
[18] Deng F H, Yang Y, Li D Q. The application of wide-field electromagnetic method to hidden gold deposit[J]. Chinese Journal of Engineering Geophysics, 2013, 10(3):357-362.
[19] 梁维天, 李勇, 王东波, 等. 辽东南金属矿勘查中广域电磁法应用效果研究[J]. 物探与化探, 2020, 44(5):1078-1084.
[19] Liang W T, Li Y, Wang D B, et al. Research on the application effect of WFEM in the exploration of metal deposits in the southeast of Liaoning Province[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1078-1084.
[20] 毛景文, 李厚民, 王义天, 等. 地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据[J]. 地质学报, 2005, 79(6):839-857.
[20] Mao J W, Li H M, Wang Y T, et al. The relationship between mantle-derived fluid and gold ore-formation in the eastern Shandong peninsula:Evidences from D-O-C-S isotopes[J]. Acta Geologica Sinica, 2005, 79(6):839-857.
[21] 刘俊来, 崔迎春, 关会梅. 辽吉朝褶皱带古元古宙岩浆核杂岩及其大地构造意义[J]. 地质通报, 2002, 21(S1):202-206.
[21] Liu J L, Cui Y C, Guan H M. Magmatic core complex in the Liaoning-Jilin-Korea Paleoproterozoic fold belt and its tectonic significance[J]. Geological Bulletin of China, 2002, 21(S1):202-206.
[22] 毛永涛. 辽东裂谷金矿地质特征及找矿标志[J]. 西部探矿工程, 2017, 29(9):161-164.
[22] Mao Y T. Geological characteristics and prospecting criteria of gold deposits in Liaodong Rift valley[J]. West-China Exploration Engineering, 2017, 29(9):161-164.
[1] 齐朝华. 广域电磁法在巨厚低阻层下水文地质勘探中的应用——以安徽淮南某煤矿为例[J]. 物探与化探, 2023, 47(3): 700-706.
[2] 胡志方, 罗卫锋, 王胜建, 康海霞, 周惠, 张云枭, 詹少全. 广域电磁法在安页2井压裂监测应用探索[J]. 物探与化探, 2023, 47(3): 718-725.
[3] 王军成, 赵振国, 高士银, 罗传根, 李琳, 徐明钻, 李勇, 袁国境. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2): 321-330.
[4] 王亮, 胡从亮, 张嘉玮, 陈国勇, 张美雪, 杨武, 张应文. 贵州区域地热成因探讨[J]. 物探与化探, 2022, 46(2): 304-315.
[5] 李帝铨, 肖教育, 张继峰, 胡艳芳, 刘最亮, 张新. WFEM与CSAMT在新元煤矿富水区探测效果对比[J]. 物探与化探, 2021, 45(5): 1359-1366.
[6] 朱云起, 李帝铨, 王金海. 基于MySQL的广域电磁法数据处理与解释软件[J]. 物探与化探, 2021, 45(4): 1030-1036.
[7] 夏暖, 鹿子林, 付俊东, 张建民, 王冬雷, 郑旭. 薄覆盖层隐伏断裂的纵横波联合探测[J]. 物探与化探, 2021, 45(2): 387-393.
[8] 危志峰, 陈后扬, 吴西全. 广域电磁法在宜春某地地热勘查中的应用[J]. 物探与化探, 2020, 44(5): 1009-1018.
[9] 詹少全, 李爱勇, 王导丽, 郝红蕾, 王磊. 极寒环境中广域电磁法勘探技术研究[J]. 物探与化探, 2020, 44(5): 1019-1024.
[10] 田红军, 尹文斌, 刘光迪, 蒋永芳, 游文兵. 广域电磁法在低阻覆盖区的应用与评价——以河南中牟为例[J]. 物探与化探, 2020, 44(5): 1025-1030.
[11] 曾何胜, 徐元璋, 刘磊, 唐宝山, 张祎然, 李义, 陈宇峰. 广域电磁法在复杂电磁干扰环境的应用研究——以某市周边地热勘查为例[J]. 物探与化探, 2020, 44(5): 1031-1038.
[12] 王洪军, 熊玉新. 广域电磁法在胶西北金矿集中区深部探测中的应用研究[J]. 物探与化探, 2020, 44(5): 1039-1047.
[13] 梁维天, 孙新胜, 王东波, 冯家新, 孙文, 陈广镇. 广域电磁法在河洼多金属矿勘查中的应用[J]. 物探与化探, 2020, 44(5): 1048-1052.
[14] 王洪军, 田红军, 贺春艳, 刘光迪. 多种物探方法在胶西北金矿集中区深部勘探的效果分析[J]. 物探与化探, 2020, 44(5): 1053-1058.
[15] 王永兵, 尹文斌, 张磊. 航空广域电磁法初步探索[J]. 物探与化探, 2020, 44(5): 1059-1065.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com