Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (2): 300-308    DOI: 10.11720/wtyht.2023.2695
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
冀北隐伏火山热液型铀矿地表地球化学异常
张洋洋1,2(), 陈岳龙1(), 李大鹏1, 康欢3, 房明亮4, 徐云亮5
1.中国地质大学(北京) 地球科学与资源学院,北京 100083
2.中国石油长庆油田分公司 油气工艺研究院,陕西 西安 710018
3.中国地震局地质研究所 地震动力学国家重点实验室,北京 100029
4.金川集团股份有限公司,甘肃 金川 737100
5.中勘天成(北京)科技有限公司,北京 100089
Surface geochemical anomalies of concealed volcanic hydrothermal uranium deposit in northern Hebei
ZHANG Yang-Yang1,2(), CHEN Yue-Long1(), LI Da-Peng1, KANG Huan3, FANG Ming-Liang4, XU Yun-Liang5
1. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
2. Petroleum Technology Research Institute, PetroChina Changqing Oilfield Company, Xi'an 710018, China
3. State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China
4. Jinchuan Group Company Limited, Jinchuan 737100, China
5. China-Explo TianCheng (Beijing) Technology Company Limited, Beijing 100089, China
全文: PDF(2883 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为研究华北地区火山热液型铀矿地表地球化学异常特征与深部铀矿体的关系,选取冀北覆盖区典型的隐伏火山热液型铀矿——大官厂铀矿床为研究对象,在大官厂矿区布置了土壤调查采样,并在有矿钻孔和矿化钻孔上方采集了土壤样,进行土壤瞬时氡、活动态铀及210Po测试分析,探讨这3种地球化学特征与深部铀矿体的关系。结果显示:高品位钻孔附近的土壤瞬时氡明显高于矿化孔,同时,土壤面积样中瞬时氡的高值与深部铀矿体对应较好;高品位铀矿钻孔中210Po略高,但面积性分布的土壤样中210Po的离散度小,分布较均匀,在矿区和无矿区的数值无差别;高品位孔中的活动态铀无明显异常,在土壤面积样中,活动态铀的最大值位于已知的无矿区。由此获得初步认识,在大比例尺上探测深埋藏铀矿体时,土壤瞬时氡浓度异常可以指示深部隐伏铀矿体的异常,而活动态铀与210Po异常不及瞬时氡灵敏。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张洋洋
陈岳龙
李大鹏
康欢
房明亮
徐云亮
关键词 隐伏火山热液型铀矿活动态铀210Po土壤瞬时氡大官厂铀矿床    
Abstract

The Daguanchang uranium deposit, a typical concealed volcanic hydrothermal uranium deposit, was selected to investigate the relationship between surface geochemical characteristics and deep uranium ore bodies of volcanic hydrothermal uranium deposits in North China. The samples for soil survey were collected in the Daguanchang mining area. They were taken from the soil in the upper part of boreholes revealing deposits and mineralization for the analyses of the instantaneous radon (Rn) concentration, mobile-state uranium, and 210Po of soil. Then, this study explored the relationships between these geochemical characteristics and deep uranium ore bodies. The results are as follows. The soil in the upper part of boreholes revealing high-grade deposits (also referred to as high-grade boreholes) had significantly higher instantaneous Rn concentration than that in the upper part of boreholes revealing mineralization (also referred to as mineralization boreholes). The high instantaneous Rn concentration in the soil samples collected from a large area corresponded well to the deep uranium ore bodies. The high-grade boreholes had slightly high 210Po. However, the 210Po in the surface soil samples showed small dispersion and relatively uniform distribution and did not exhibit differences between the barren and mining areas. Mobile-state uranium in high-grade boreholes did not exhibit significant anomalies. The maximum anomaly value of mobile-state uranium in soil samples collected from a large area occurred in the known barren areas. Therefore, it can be preliminarily concluded that, for the exploration of deeply buried uranium ore bodies on a large scale, the anomalies of instantaneous Rn concentration in the soil can indicate the anomalies of deeply buried uranium ore bodies, while the mobile-state uranium and 210Po in soil are less sensitive than instantaneous Rn.

Key wordsconcealed volcanic hydrothermal uranium deposit    mobile-state uranium    210Po    instantaneous Rn concentration    Daguanchang uranium deposit
收稿日期: 2021-12-23      修回日期: 2022-07-07      出版日期: 2023-04-20
ZTFLH:  P619.14  
  P632  
基金资助:科技部国家重点研发项目“穿透性地球化学勘查技术”(2016YFC0600604)
通讯作者: 陈岳龙(1962-),男,教授,博士生导师,主要从事区域地球化学研究工作。Email:chyl@cugb.edu.cn
引用本文:   
张洋洋, 陈岳龙, 李大鹏, 康欢, 房明亮, 徐云亮. 冀北隐伏火山热液型铀矿地表地球化学异常[J]. 物探与化探, 2023, 47(2): 300-308.
ZHANG Yang-Yang, CHEN Yue-Long, LI Da-Peng, KANG Huan, FANG Ming-Liang, XU Yun-Liang. Surface geochemical anomalies of concealed volcanic hydrothermal uranium deposit in northern Hebei. Geophysical and Geochemical Exploration, 2023, 47(2): 300-308.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.2695      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I2/300
Fig.1  大官厂矿区大地构造位置(a)及地质简图(b)(据参考文献[17]修改)
平行样编号 210Po 活动态铀
含量/(Bq·g-1) 相对双差/% 合格率/% 含量/10-6 相对双差/% 合格率/%
GY-5 0.024 0 100 0.084 6.90 100
GY-36(GY-5-1) 0.024 0.090
GY-12 0.009 11.76 0.066 1.53
GY-37(GY-12-1) 0.008 0.065
GY-21 0.022 20.00 0.072 10.22
GY-38(GY-21-1) 0.018 0.065
Table 1  平行样合格率统计
参数 ZK-2 ZK-3
ZK-2A ZK-2B ZK-2C ZK-2D ZK-3A ZK-3B ZK-3C ZK-3D
Rn含量/(Bq·m-3) 5881.5 300.0
210Po含量/(Bq·g-1) 0.009 0.027
活动态铀含量/10-6 0.280 0.240 0.250 0.250 0.140 0.130 0.140 0.140
Table 2  钻孔附近土壤瞬时氡、210Po及活动态铀分析结果
统计量(特征参数) Rn 210Po 活动态铀
(Bq·m-3) (Bq·g-1) 10-6
整体代表性特征参数 最小值 176.9 0.007 0.023
最大值 13 027.2 0.036 0.180
平均值 2 225.1 0.019 0.080
中位数 1 538.9 0.018 0.070
离散性特征参数 极差 12 850.3 0.029 0.157
均方差 2 365.5 0.007 0.039
变化系数 1.06 0.38 0.50
分布型式检验 偏度 3.15 0.33 1.04
峰度 12.67 -0.54 0.70
Table 3  面积样调查区土壤瞬时氡、210Po及活动态铀统计结果(n=35)
Fig.2  土壤瞬时氡分布直方图(a)及Q-Q图(b)(据文献[20]修改)
Fig.3  土壤210Po (a)及活动态铀含量(b)分布直方图
Fig.4  土壤瞬时氡(a)[20]210Po含量(b)及活动态铀含量(c)等值线分布
Fig.5  大官厂火山热液型铀矿床土壤剖面瞬时氡、210Po及活动态铀折线
参数 t 自由度 显著性(双尾)
瞬时氡-210Po 5.565 34 0.000
活动态U-瞬时氡 5.565 34 0.000
活动态U-210Po -9.707 34 0.000
Table 4  土壤瞬时氡、210Po及活动态铀T检验
[1] 纪宏伟. 内蒙古克什克腾旗红山子铀钼矿床成矿作用研究[D]. 北京: 核工业北京地质研究院, 2015.
[1] Ji H W. Study on mineralization of Hongshanzi uranium molybdenum deposit in Hexigten Banner,Inner Mongolia[D]. Beijing: Beijing Research Institute of Uranium Geology, 2015.
[2] Wang X Q, Cheng Z H, Lu Y X, et al. Nanoscale metals in earth gas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains[J]. Journal of Geochemical Exploration, 1997, 58(1):63-72.
doi: 10.1016/S0375-6742(96)00052-0
[3] 勒夫布格L. 用于地面铀矿普查的γ能谱法的未来发展[J]. 世界核地质科学, 1974(6):38-43.
[3] Lofburger L. Future development of γ-spectrometry for surface uranium prospecting[J]. World Nuclear Geoscience, 1974(6):38-43.
[4] 邹家衡, 张在作, 张金泉, 等. α卡片法在铀矿普查中的初步试验效果[J]. 放射性地质, 1981(5):435-442,453.
[4] Zou J H, Zhang Z Z, Zhang J Q, et al. Preliminary test results of α-method in uranium prospecting[J]. Uranium Geology, 1981(5):435-442,453.
[5] Gingrich J E. Radon as a geochemical exploration tool[J]. Journal of Geochemical Exploration, 1984, 21(1-3):19-39.
doi: 10.1016/0375-6742(84)90032-3
[6] 杨亚新, 刘庆成, 龙期华, 等. 氡气测量在下庄铀矿田扩大矿床范围中的应用[J]. 物探与化探, 2003, 27(3):184-186.
[6] Yang Y X, Liu Q C, Long Q H, et al. The application of radon gas survey to the expansion of the Xiazhuang uranium ore field[J]. Geophysical and Geochemical Exploration, 2003, 27(3):184-186.
[7] Dyck W. Evaluation of the 210Po method at the midwest uranium deposit,Northern Saskatchewan,Canada[J]. Journal of Geochemical Exploration, 1984(20):85-92.
[8] 李建飞, 付锦, 范洪海, 等. 硬岩铀矿放射性物化探综合勘查技术[J]. 南华大学学报:自然科学版, 2007, 21(4):42-47.
[8] Li J F, Fu J, Fan H H, et al. The integrated geophysical and geochemical exploration techniques of hard rock uranium ore radioactivity[J]. Journal of University of South China:Science and Technology, 2007, 21(4):42-47.
[9] 罗强. 沙洲铀矿区综合地球物理找矿标识及找矿前景分析[D]. 南昌: 东华理工大学, 2013.
[9] Luo Q. The geophysical prospecting logo and prospecting protential in the Shazhou uranium mine[D]. Nachang: East China Institute of Technology, 2013.
[10] 康欢, 陈岳龙, 李大鹏, 等. 二连盆地哈达图铀矿床覆盖区地球化学异常源示踪与判别[J]. 铀矿地质, 2019, 35(6):351-358.
[10] Kang H, Chen Y L, Li D P, et al. Study on tracing and distinguishing of geochemical anomalous sources in coverage area of Hadatu uranium deposit of Erlian basin[J]. Uranium Geology, 2019, 35(6):351-358.
[11] Xie X J, Wang X Q, Xu L, et al. Orientation study of strategic deep penetration geochemical methods in the central Kyzylkum desert terrain,Uzbekistan[J]. Journal of Geochemical Exploration, 1999, 66(1/2):135-143.
doi: 10.1016/S0375-6742(99)00024-2
[12] 谢学锦, 王学求. 深穿透地球化学新进展[J]. 地学前缘, 2003, 10(1):225-238.
[12] Xie X J, Wang X Q. Recent developents on deep-penetratin geochemistry[J]. Earth Science Frontiers, 2003, 10(1):225-238.
[13] 张必敏, 王学求, 徐善法, 等. 盆地金属矿穿透性地球化学勘查模型与案例[J]. 中国地质, 2016, 43(5):1697-1709.
[13] Zhang B M, Wang X Q, Xu S F, et al. Models and case history studies of deep-penetrating geochemical exploration for concealed deposits in basins[J]. Geology in China, 2016, 43(5):1697-1709.
[14] 刘红艳, 王学求. 金属活动态提取技术在十红滩铀矿的应用[J]. 吉林大学学报:地球科学版, 2006, 36(2):183-186.
[14] Liu H Y, Wang X Q. Application of selective leaching of mobile metal forms on the exploration for sandstone-type uranium deposit in Shihongtan,Xinjiang,China[J]. Journal of Jilin University:Earth Science Edition, 2006, 36(2):183-186.
[15] 谈成龙. 金属活动态测量方法在层间氧化带砂岩型铀矿勘查中的初步试验[J]. 世界核地质科学, 2005, 22(4):231-235.
[15] Tan C L. Preliminary experiment on measuring technique for mobile forms of metals in overburdens in the exploration of interlayer oxidation zone sandstone-type uranium deposits[J]. World Nuclear Geoscience, 2005, 22(4):231-235.
[16] 李耀菘. 冀北沽源盆地中生代火山岩的同位素年龄及成因[J]. 资源调查与环境, 1988, 9(4):47-60.
[16] Li Y S. Isotope age and genesis on mesozoic volcanic rocks in Guyuan basin,Northern Hebei[J]. Resources Survey and Environment, 1988, 9(4):47-60.
[17] 赵丹, 王南萍, 周觅, 等. 活性炭测氡及分量化探在河北省沽源县大官厂研究区铀矿勘查中的应用研究[J]. 铀矿地质, 2018, 34(1):39-45.
[17] Zhao D, Wang N P, Zhou M, et al. Application of radon survey by activated carbon and partial extraction geochemical prospecting methods for uranium exploration in Daguanchang of Guyuan,Hebei[J]. Uranium Geology, 2018, 34(1):39-45.
[18] 师淑娟, 代永刚, 陈军威, 等. 冀北地区火山岩型隐伏铀矿地球化学勘查方法试验研究[J]. 地质科技情报, 2018, 37(2):103-108.
[18] Shi S J, Dai Y G, Chen J W, et al. Experimental study of geochemical exploration methods for volcanic-type concealed uranium deposit in Northern Hebei[J]. Geological Science and Technology Information, 2018, 37(2):103-108.
[19] 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007:113-118.
[19] Chi Q H, Yan M C. Applied geochemical element abundance data manual[M]. Beijing: Geological Publishing House, 2007:113-118.
[20] Zhang Y Y, Chen Y L, Li D P, et al. Deeply buried volcanic-related hydrothermal uranium deposit:The Daguanchang deposit,Northern Hebei Province,North China Craton[J/OL]. Journal of Earth Science:1-25. http://kns.cnki.net/kcms/detail/42.1788.P.20211214.1514.002.html.
[21] 阳小兰, 张茹春, 张振, 等. 安固里淖湖近5000年来环境变化的孢粉及地球化学沉积记录[J]. 第四纪研究, 2017, 37(1):130-142.
[21] Yang X L, Zhang R C, Zhang Z, et al. Environmental change since 5000 cal.a B.P.in the Angulinuur lake area based on palynological and geochemical records[J]. Quaternary Sciences, 2017, 37(1):130-142.
[22] 范佳伟, 肖举乐, 温锐林, 等. 内蒙古达里湖沉积记录的中晚全新世干旱事件[J]. 第四纪研究, 2019, 39(3):701-716.
[22] Fan J W, Xiao J L, Wen R L, et al. Middle to late Holocene drought events recorded by the sediments from Dali Lake, Inner Mongolia[J]. Quaternary Sciences, 2019, 39(3):701-716.
[23] 刘行, 曲凯, 尹青青, 等. 活性炭吸附测氡法在北秦岭柳树湾铀矿床勘查中的应用[J]. 铀矿地质, 2020, 36(3):190-198.
[23] Liu X, Qu K, Yin Q Q, et al. Application of activated charcoal radon survey method in the exploration of Liushuwan uranium deposit in north Qinling Orogen,China[J]. Uranium Geology, 2020, 36(3):190-198.
[24] 王浩锋, 刘波, 陈霜, 等. 相关分析在二连盆地艾勒格庙地区210Po异常解释中的应用[J]. 物探与化探, 2018, 42(6):1162-1172.
[24] Wang H F, Liu B, Chen S, et al. The application of correlation analysis to the 210Po anomaly interpretation in Ailegemiao area of Erlian Basin[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1162-1172.
[25] Charbonneau B W, Darnley A G. Radioactive precipitation and its significance to high-sensitivity gamma-ray spectrometer surveys[J]. Geological Survey of Canada, 1970, 70(1):32-36.
[26] 夏定良. Po法找矿的初步成果[J]. 放射性地质, 1981(1):69-75.
[26] Xia D L. Preliminary results of Po prospecting[J]. Uranium Geology, 1981(1):67-73.
[27] 巢小林. 钻孔岩心剖面210Po测定及其找矿意义[J]. 铀矿地质, 2007, 23(5):305-309,315.
[27] Chao X L. 210Po measurement of borehole core and significance for uranium exploration[J]. Uranium Geology, 2007, 23(5):305-309,315.
[28] Lu M, Ye R, Wang Z K, et al. Geogas prospecting for buried deposits under loess overburden:Taking Shenjiayao gold deposit as an example[J]. Journal of Geochemical Exploration, 2019, 197:122-129.
doi: 10.1016/j.gexplo.2018.11.015
[29] 赵玉岩, 孙文, 韩江涛, 等. 浸取分离与电感耦合等离子体质谱联用测定壤中活动态铀[J]. 科学技术与工程, 2018, 18(30):140-144.
[29] Zhao Y Y, Sun W, Han J T, et al. Determination of mobile uranium in soil with leaching separation and inductively coupled plasma mass spectrometry[J]. Science Technology and Engineering, 2018, 18(30):140-144.
[30] 葛玮, 朱姝, 张鑫. 层析法提取土壤样品中活动态铀及其找矿意义[J]. 铀矿地质, 2009, 25(1):45-54.
[30] Ge W, Zhu S, Zhang X. Chromatography method to extract uranium in mobile forms from soil samples and its significance for uranium ore prospecting[J]. Uranium Geology, 2009, 25(1):45-54.
[31] 谈成龙, 谢海宁, 汤三星. 七种放射性测量方法在砂岩型铀矿找矿中的试验[J]. 世界核地质科学, 2007, 24(3):172-177.
[31] Tan C L, Xie H N, Tang S X. The experiment of seven radioactive methods in the exploration of sandstone-type uranium deposits[J]. World Nuclear Geoscience, 2007, 24(3):172-177.
[32] 叶庆森, 杨尚海, 杨建新. 元素活动态测量法在鄂尔多斯盆地砂岩型铀矿勘查中的应用[J]. 地质通报, 2005, 24(10/11):1007-1012.
[32] Ye Q S, Yang S H, Yang J X. Application of the method of determination of element mobile forms in exploration for sandstone-type uranium deposits in the Ordos basin,China[J]. Geological Bulletin of China, 2005, 24(10/11):1007-1012.
[33] 王学求, 谢学锦, 卢荫麻. 地气动态提取技术的研制及在寻找隐伏矿上的初步试验[J]. 物探与化探, 1995, 19(3):161-171.
[33] Wang X Q, Xie X J, Lu Y M. Dynamic collection of geogas and its preliminary application in search for concealed deposits[J]. Geophysical and Geochemical exploration, 1995, 19(3):161-171.
[34] 姚文生, 王学求, 张必敏, 等. 鄂尔多斯盆地砂岩型铀矿深穿透地球化学勘查方法实验[J]. 地学前缘, 2012, 19(3):167-176.
[34] Yao W S, Wang X Q, Zhang B M, et al. Pilot study of deep-penetrating geochemical exploration for sandstone-type uranium deposit,Ordos Basin[J]. Earth Science Frontiers, 2012, 19(3):167-176.
[1] 王浩锋, 刘波, 陈霜, 薛文浩, 胡国祥. 相关分析在二连盆地艾勒格庙地区 210Po异常解释中的应用[J]. 物探与化探, 2018, 42(6): 1166-1172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com