Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (6): 1588-1596    DOI: 10.11720/wtyht.2021.0291
  《重、磁方法理论及应用研究》专栏 本期目录 | 过刊浏览 | 高级检索 |
基于归一化磁源强度垂向差分的磁源参数快速估计方法
黄远生1,2(), 王彦国1(), 罗潇3
1.东华理工大学 地球物理与测控技术学院,江西 南昌 330013
2.海南水文地质工程地质勘察院,海南 海口 571100
3.核工业230研究所,湖南 长沙 410011
A fast estimation method of magnetic-source parameters based on the vertical difference of normalized source strength
HUANG Yuan-Sheng1,2(), WANG Yan-Guo1(), LUO Xiao3
1. School of Geophysics and Measure-control Technology, East China University of Technology, Nanchang 330013, China
2. Hainan Investigation Institute of Hydrogeology and Engineering Geology, Haikou 571100, China
3. No. 230 Research Institute of Nuclear Industry, Changsha 410011, China
全文: PDF(5303 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

磁异常快速自动反演是磁数据解释的主要手段,归一化磁源强度因不受磁化方向影响而成为三维磁数据解释的主要方法。本文在归一化磁源强度基础上,首先进行了不同高度上的垂向差分计算,再根据不同高度差分关系,推导出了一种基于归一化磁源强度垂向差分的磁源参数快速反演方法。该方法可通过调节延拓高度来提高计算稳定性。模型试验表明归一化磁源强度垂向差分具有更高的异常分辨率,极大值能够有效地识别场源水平位置,而快速反演方法则较好地获取了场源的深度与构造指数。将本文方法应用于内蒙古M区地面磁异常之中,获得了磁源的平面展布和深度及构造指数信息,为研究区隐伏岩体分布提供了依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄远生
王彦国
罗潇
关键词 归一化磁源强度磁化方向垂向差分磁源参数反演    
Abstract

Fast automatic inversion is a primary tool for magnetic data interpretation. The normalized source strength (NSS) is one main method for three-dimensional magnetic data interpretation as it is independent of magnetization direction. In this paper, the vertical difference of the normalized source of strength is introduced, and a fast estimation method of magnetic-source parameters based on the vertical difference of normalized source strength is derived in the light of the vertical difference of NSS at different height. In addition, upward continuation of suitable height can be used to improve the stability of the method. Model tests shows that the vertical difference of NSS has higher resolution ability and can recognize the horizontal locations of magnetic sources, and the proposed automatic inversion method can obtain the depths and structural indices of the sources. In this paper, the proposed method is applied to magnetic anomaly of M area over Inner Mongolia, and obtain the horizontal locations, depths and structural indices of magnetic sources. The results could provide useful information for forecasting the distribution of concealed rock mass.

Key wordsnormalized source strength    magnetization direction    vertical difference    magnetic source    parameter inversion
收稿日期: 2021-02-09      修回日期: 2021-05-19      出版日期: 2021-12-20
ZTFLH:  P631  
基金资助:国家重点研发计划项目“铀矿基地深部成矿条件地球物理探测技术研究”(2017YFC0602603);江西省自然科学基金项目“基于位场多源型tilt-depth法的场源深度快速自动反演研究”(20171BAB213030);国家自然科学基金项目“基于位场广义梯度张量的欧拉反褶积方法研究”(41504098)
通讯作者: 王彦国
作者简介: 黄远生(1994-),男,在读硕士研究生,主要从事重磁勘探方面的学习与研究工作。Email: 1289418554@qq.com
引用本文:   
黄远生, 王彦国, 罗潇. 基于归一化磁源强度垂向差分的磁源参数快速估计方法[J]. 物探与化探, 2021, 45(6): 1588-1596.
HUANG Yuan-Sheng, WANG Yan-Guo, LUO Xiao. A fast estimation method of magnetic-source parameters based on the vertical difference of normalized source strength. Geophysical and Geochemical Exploration, 2021, 45(6): 1588-1596.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.0291      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I6/1588
Fig.1  单一球体磁异常反演结果(z1=0 km, z2=0.2 km)
模型体
编号
模型体
类型
边长或半径/
km
上顶或质心
埋深/km
下底/
km
磁化方向
(倾角,偏角)
磁化强度/
(A·m-1)
球体(N=3) 0.5 1.5 (45°, 45°) 1
棱柱体(N≈0) 5×5 0.5 10 (60°, 45°) 0.1
薄板(N≈1) 4×4 0.5 0.6 (0°, 45°) 1
岩脉(N=1) 16×0.2 1 100 (30°, 45°) 1
Table 1  模型体参数
Fig.2  组合模型正演磁异常
Fig.3  组合模型磁异常的反演结果(延拓点距z1=0 km,z2=-0.2 km)
Fig.4  含1%随机噪声的组合模型磁异常
Fig.5  含噪组合模型磁异常的反演结果(z1=0 km, z2=-0.2 km)
Fig.6  含噪组合模型磁异常的反演结果(z1=-0.3 km, z2=-0.5 km)
Fig.7  含噪组合模型磁异常的反演结果(z1=-0.5 km, z2=-0.7 km)
反演结果 球体 棱柱体 薄板 岩脉
z0(1.5) N(3) z0(0.5) N(0) z0(0.5) N(1) z0(1.0) N(1)
无噪声 z1=0, z2=-0.2 1.52 3.00 0.61 0.34 0.51 0.77 1.08 1.16
含噪声 z1=-0.3, z2=-0.5 1.46 2.88 0.74 0.63 0.51 0.76 1.09 1.18
z1=-0.5, z2=-0.7 1.54 3.05 0.94 0.80 0.45 0.61 1.09 1.18
Table 2  无噪及含噪组合磁异常不同高度上的反演结果
Fig.8  内蒙古M区地质
Fig.9  内蒙古M地区磁数据处理(z1=-0.5 km,z2=-0.75 km)
[1] Peters L J. The direct approach to magnetic interpretation and its practical application[J]. Geophysics, 1949, 14(3):290-320.
doi: 10.1190/1.1437537
[2] Thompson D T. EUDPH: A new technique for making computer assisted depth estimates from magnetic data[J]. Geophysics, 1982, 47(1):31-37.
doi: 10.1190/1.1441278
[3] Reid A B, Allsop J M, Granser H, et al. Magnetic interpretation in three dimensions using Euler deconvolution[J]. Geophysics, 1990, 55(1):80-91.
doi: 10.1190/1.1442774
[4] Zhang C Y, Mushayandebvu M F, Reid A B, et al. Euler deconvolution of gravity tensor gradient data[J]. Geophysics, 2000, 65(2):512-520.
doi: 10.1190/1.1444745
[5] Huang D, Gubbins D, Clark R A, et al. Combined study of Euler’s homogeneity equation for gravity and magnetic field[C]// Extended Abstracts of 57th EAGE Conference, Glasgow, UK, 1995: 144.
[6] Salem A, Ravat D. A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data[J]. Geophysics, 2003, 68(6):1952-1961.
doi: 10.1190/1.1635049
[7] Salem A, Williams S, Fairhead D, et al. Interpretation of magnetic data using tilt-angle derivatives[J]. Geophysics, 2008, 71(1):1-10.
[8] 马国庆, 杜晓娟, 李丽丽. 解释位场全张量数据的张量局部波数法及其与常规局部波数法的比较[J]. 地球物理学报, 2012, 55(7):2450-2461.
[8] Ma G Q, Du X J, Li L L. Comparison of the tensor local wavenumber method with the conventional local wavenumber method for interpretation of total tensor data of potential fields[J]. Chinese Journal of Geophysics, 2012, 55(7):2450-2461.
[9] Atchuta R D, Ram-Babu H V, Sanker-narayan P V. Interpretation of magnetic anomalies due to dikes: The complex gradient method[J]. Geophysics, 1981, 46(11):1572-1578.
doi: 10.1190/1.1441164
[10] Macleod I N, Jones K, Dai T F. 3-D analytic signal in the interpretation of total magnetic field data at low magnetic latitudes[J]. Exploration Geophysics, 1993, 24:679-688.
doi: 10.1071/EG993679
[11] Salem A, Ravat D, Mushayandebvu M F, et al. Linearized least-squares method for interpretation of potential-field data from sources of simple geometry[J]. Geophysics, 2004, 69(3):783-788.
doi: 10.1190/1.1759464
[12] Salem A. Interpretation of magnetic data using analytic signal derivatives[J]. Geophysical Prospecting, 2005, 53:75-82.
doi: 10.1111/gpr.2005.53.issue-1
[13] Ma G Q, Du X J. An improved analytic signal technique for the depth and structural index from 2D magnetic anomaly data[J]. Pure and Applied Geophysics, 2012, 169:2193-2200.
doi: 10.1007/s00024-012-0484-6
[14] Cooper G R J. The automatic determination of the location and depth of contacts and dykes from aeromagnetic data[J]. Pure and Applied Geophysics, 2014, 171:2417-2423.
doi: 10.1007/s00024-014-0789-8
[15] Cooper G R J. Using the analytic signal amplitude to determine the location and depth of thin dikes from magnetic data[J]. Geophysics, 2015, 80(1):J1-J6.
doi: 10.1190/geo2014-0061.1
[16] Cooper G R J, Whitehead R C. Determining the distance to magnetic source[J]. Geophysics, 2016, 81(2):J25-J34.
[17] Cooper G R J. Determining the depth and location of potential field sources without specifying the structural index[J]. Arabian Journal of Geoscience, 2017, 10(438):1-7.
doi: 10.1007/s12517-016-2714-1
[18] Wang Y G, Luo X, Zhang J. Interpretation of 2D magnetic sources based on the reciprocal of the analytic signal amplitude[J]. Exploration Geophysics, 2019, 50(6):645-652.
doi: 10.1080/08123985.2019.1659101
[19] Salem A, Williams S E, Fairhead J D, et al. Tilt-depth method: A simple depth estimation method using fi rst-order magnetic derivatives[J]. The Leading Edge, 2007, 26(12):1502-1505.
doi: 10.1190/1.2821934
[20] Fairhead J D, Salem A, Cascone L, et al. New development of the magnetic tilt-depth method to improve structural mapping of sedimentary basins[J]. Geophysical Prospecting, 2011, 59:1072-1086.
doi: 10.1111/gpr.2011.59.issue-6
[21] 张恒磊, Marangoni Y R, 左仁广, 等. 改进的各向异性标准化方差探测斜磁化磁异常源边界[J]. 地球物理学报, 2014, 57(8):2724-2731.
[21] Zhang H L, Marangoni Y R, Zuo R G, et al. The improved anisotropy normalized variance for detecting non-vertical magnetization anomalies[J]. Chinese Journal of Geophysics, 2014, 57(8):2724-2731.
[22] Wang Y G, Zhang J, et al. Improved tilt-depth method for fast estimation of top and bottom depths of magnetic bodies[J]. Applied Geophysics, 2016, 13(2):249-256.
doi: 10.1007/s11770-016-0551-3
[23] Cooper G R J. Applying the tilt-depth and contact-depth methods to the anomalies of thin dykes[J]. Geophysical Prospecting, 2017, 65:316-323.
doi: 10.1111/gpr.2017.65.issue-1
[24] 曹伟平, 王彦国, 杨博 等. Tilt-depth 方法适用性研究及其应用[J]. 世界地质, 2017, 36(2):560-569.
[24] Cao W P, Wang Y G, Yang B, et al. Applicability of tilt-depth method and its application[J]. World Geology, 2017, 36(2):560-569.
[25] Wilson H S. Analysis of the magnetic gradient tensor[J]. Canada Technical Memorandum, 1985, 8:5-13.
[26] Beiki M, Clark D A, Austin J R, et al. Estimating source location using normalized magnetic source strength calculated from magnetic gradient tensor data[J]. Geophysics, 2012, 77(6):J23-J37.
doi: 10.1190/geo2011-0437.1
[27] Pikington M, Beiki M. Mitigating remanent magnetization effects in magnetic data using the normalized source strength[J]. Geophysics, 2013, 78(3):J25-J32.
doi: 10.1190/geo2012-0225.1
[28] Guo L H, Meng X H, Zhang G L. Three-dimensional imaging for total amplitude magnetic anomaly and normalized source strength in the presence of strong remanent magnetization[J]. Journal of Applied Geophysics, 2014, (111):121-128.
[29] 饶椿锋, 于鹏, 胡书凡, 等. 基于加权模型参数的归一化磁源强度三维反演[J]. 石油物探, 2017, 56(4):599-606.
[29] Rao C F, Yu P, Hu S F, et al. The 3D inversion of the normalized source strength data based on weighted model parameters[J]. Geophysical Prospecting for Petroleum, 2017, 56(4):599-606.
[30] Blakely R J. Potential theory in gravity and magnetic applications [M]. London: Cambridge University Press, 1995.
[31] Pedersen L B, Rasmussen T M. The gradient tensor of potential field anomalies: Some implications on data collection and data processing of maps[J]. Geophysics, 1990, 55(12):1558-1566.
doi: 10.1190/1.1442807
[1] 马良涛, 范廷恩, 许学良, 董建华, 蔡文涛. 油气检测多技术联合在B油田的应用研究[J]. 物探与化探, 2021, 45(4): 961-969.
[2] 王亚, 易远元, 王成泉, 王孟华, 杨洲鹏, 张红文, 王盛亮, 贾敬. 叠后反演技术在杨税务潜山裂缝孔隙型储层预测中的应用[J]. 物探与化探, 2020, 44(5): 1208-1214.
[3] 王逸宸, 柳林涛, 许厚泽. 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44(2): 394-400.
[4] 刘成功, 金胜, 魏文博, 景建恩, 叶高峰, 尹曜田. 高密度电阻率法比值参数基于阻尼最小二乘反演[J]. 物探与化探, 2019, 43(2): 351-358.
[5] 刘双, 刘天佑, 冯杰, 高文利, 邱礼泉. 蚁群算法在磁测资料反演解释中的应用[J]. 物探与化探, 2013, 37(1): 150-154.
[6] 冯兵, 孟小红, 张斌. 磁源瞬变电磁法中心回线装置全程视电阻率定义及计算[J]. 物探与化探, 2010, 34(5): 686-690.
[7] 方迎尧, 张培琴, 刘浩军. 低磁纬度地区ΔT异常解释的途径与方法[J]. 物探与化探, 2006, 30(1): 48-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com