E-mail Alert Rss
 

物探与化探, 2020, 44(5): 1183-1189 doi: 10.11720/wtyht.2020.1606

方法研究·信息处理·仪器研制

TBM机施工隧道瞬变电磁超前探测研究

胡佳豪,1, 李貅1, 刘航2, 胡伟明1, 岳鑫1

1.长安大学 地质工程与测绘学院,陕西 西安 710061

2.中煤科工集团西安研究院有限公司,陕西 西安 710077

Research on the advanced detection of transient electromagnetic in tunnel construction by TBM

HU Jia-Hao,1, LI Xiu1, LIU Hang2, HU Wei-Ming1, YUE Xin1

1.College of Geological Engineering and Geomatics, Chang'an University , Xi'an 710061 , China

2.Xi'an Research Institute, China Coal Technology & Engineering Group Corp., Xi'an 710077 , China

责任编辑: 沈效群

收稿日期: 2019-12-27   修回日期: 2020-05-7   网络出版日期: 2020-10-20

基金资助: 国家重点研发计划项目.  2017YFC1502600
国家自然科学基金重点项目.  41830101

Received: 2019-12-27   Revised: 2020-05-7   Online: 2020-10-20

作者简介 About authors

胡佳豪(1996- ),男,就读于长安大学地质工程与测绘学院地球物理系,硕士研究生,研究方向:瞬变电磁法。Email: hujiahao_pa@163.com

摘要

在隧道掘进机(TBM)施工隧道内,传统瞬变电磁的装置形式受到了TBM机械的限制,TBM自身的金属构件对二次场衰减电压的采集产生了强烈的电磁干扰。为了克服瞬变电磁法在TBM施工隧道内遇到的困难,在前人工作的基础上,尝试提出了一种基于电性源激发、电场分量采集的施工隧道瞬变电磁超前探测装置形式。针对钻爆法与TBM施工隧道各自不同的工况,利用三维时域有限差分法对单个电性源激励下隧道前方瞬变电磁场的分布规律与响应特征进行了正演模拟。通过对瞬变电磁场的分布规律以及响应特征进行分析,认为所述的电性源发射装置不仅可以在钻爆法施工隧道内使用,并且具有在TBM施工隧道内进行隧道超前预报的能力。

关键词: 隧道超前预报 ; TBM ; 瞬变电磁法 ; 电性源 ; 电场分量采集

Abstract

When the tunnel passes through the complex strata with bad geological development, it often encounters geological disasters such as water inrush, mud inrush, collapse and roof fall. During the construction of the tunnel, the advanced geological prediction for the adverse geological disasters such as water and mud inrush has become an important issue to ensure the construction safety. Transient electromagnetic method has been widely used in the prediction of tunnel and underground cavern construction period. However, with the increasingly complex construction environment, the application of traditional TEM is restricted by various factors. For example, in TBM construction tunnel, the traditional transient electromagnetic device form is limited by TBM machinery, and the metal components of TBM produce strong electromagnetic interference to the collection of secondary field attenuation voltage, which makes this kind of method difficult to apply to TBM construction tunnel at present. In order to overcome the difficulties encountered by TEM in TBM tunnel construction, the authors, based on previous work, attempted to put forward a type of TEM advanced detection device based on electrical source excitation and electric field component acquisition. According to the different working conditions of drilling and blasting method and TBM construction tunnel, the three-dimensional finite-difference time-domain method is used to simulate the distribution and response characteristics of transient electromagnetic field in front of the tunnel excited by a single electrical source. Based on the analysis of the distribution and response characteristics of transient electromagnetic field, the authors hold that the single electrical source launching device not only can be used in the tunnel construction by drilling and blasting but also has the capability of advanced prediction in the tunnel construction by TBM.

Keywords: tunnel advance prediction ; TBM ; transient electromagnetic method ; electrical source ; electric field component acquisition

PDF (3160KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

胡佳豪, 李貅, 刘航, 胡伟明, 岳鑫. TBM机施工隧道瞬变电磁超前探测研究. 物探与化探[J], 2020, 44(5): 1183-1189 doi:10.11720/wtyht.2020.1606

HU Jia-Hao, LI Xiu, LIU Hang, HU Wei-Ming, YUE Xin. Research on the advanced detection of transient electromagnetic in tunnel construction by TBM. Geophysical and Geochemical Exploration[J], 2020, 44(5): 1183-1189 doi:10.11720/wtyht.2020.1606

0 引言

随着我国隧道工程建设规模的不断扩大,隧道工程的数量和长度逐渐增加,部分隧道地质条件异常复杂,施工难度大大增加,这对隧道超前预报工作提出了更高的要求[1,2,3]。目前钻爆法施工隧道地质超前预报技术发展较快,主要包括:超前钻探类(超前导坑、探洞、超前钻探等),地震反射类(隧道负视速度法、隧道地震预报TSP、隧道反射成像TR)、极小偏移距地震波法等),电磁类(地质雷达、隧道瞬变电磁等),直流电法类(激发极化法、电阻率法等)以及其他方法(核磁共振法、红外探水法、温度探测法等)。由于每类探测方法是以地质介质的某一性质(弹性性质、导电性质、导热性质等)差异为物理基础,每类技术都有各自的适用范围、敏感特性和优缺点。李术才等提出了四阶段全过程的隧道综合地质超前预报体系,充分利用每种方法的优势,初步形成了基于约束联合反演理论的预报方法[3]

但是隧道掘进机(TBM)施工条件下的隧道超前预报技术的进展却比较缓慢,这主要是因为隧道掘进机施工方法自身的特殊性和复杂性。造成这一现象的主要原因为:①掘进机(TBM)这一大型机械占据了隧道掌子面后方大部分的施工空间,使得无法在隧道掌子面的边墙上布设超前探测的测线以及激发装置和接收传感器,并且超前地质预报的观测空间非常狭小,很难建立一种对隧道掌子面前方不良地质体地球物理响应敏感的观测模式,比如在钻爆法中可用的 TSP、TRT、TST 等技术很难在TBM机施工隧道中应用。②隧道掘进机施工(TBM)条件下的物理环境极为复杂,会引发巨大的干扰和假异常响应,我们无法观测到掌子面前方的有效地球物理响应,这导致在钻爆法施工隧道中可用的瞬变电磁技术和地质雷达技术均无法适用于TBM施工下的隧道超前预报环境[4,5,6,7]。为此,本文提出了将电性源作为激发源代替传统的回线源进行隧道超前预报工作。相比于回线源,电性源电极直接布设在隧道掌子面上,供以发射电流,在一次场断开之后观测二次场。电性源直接向地层中直接辐射电流,其二次场电场的能量主要以涡旋电流为主,并且电场在电性分界面法向分量连续[8,9],并且TBM机所感应出的二次电场的水平分量场值较小,在一定程度上能够降低TBM机对于电性源瞬变电磁的二次电场影响。

本文主要研究了以单个电性源作为发射源的瞬变电磁法在隧道超前预报中的响应特点。研究思路如下:基于瞬变电磁时域有限差分(FDTD)程序,研究了以单个电性源作发射源在钻爆法施工条件下以及TBM机施工条件下的瞬变电磁响应,探索电磁场的三个分量关断后在隧道掌子面附近的分布情况,以及TBM机退刀距离对瞬变电磁响应的影响规律。最后计算了含不同异常含水体的模型,并分析了其异常响应规律,验证了电性源装置在TBM机施工条件下进行超前预报的可行性。

1 电性源瞬变电磁有限差分原理

论文的这一部分主要介绍了采用时域有限差分法(FDTD)进行隧道模型下电性源瞬变电磁仿真的原理。隧道模型区别于其他的模型,需要对时域有限差分法做一些适当的改进。在这一部分,本文主要参照了孙怀凤和卢绪山的做法[10,11],介绍了隧道模型下激励源的施加方法、非均匀网格的剖分方案、边界条件、空气层电导率的处理方式。

在瞬变电磁勘探领域常常会忽略位移电流,在忽略位移电流后麦克斯韦方程组为

$\begin{cases} \nabla \times E = -\frac{\partial B}{\partial t}, \\ \nabla \times H = \sigma E, \\ \nabla \times E = 0, \\ \nabla \times H = 0。\end{cases}$

为了进行时间域上的迭代,在方程(1)中加入了人工虚拟位移电流项,之后方程(1)变为:

$\nabla \times H = \gamma\frac{\partial E}{\partial t} + \sigma E ,$

在有源的区域,还需要加上电流密度项:

$\nabla \times H = \gamma\frac{\partial E}{\partial t} + \sigma E + J_{s} 。$

式中:Js是源电流密度。

在时间域有限差分法(FDTD)离散中,电场和磁场空间离散方式如图1所示。在Yee元胞中每一个磁场分量被4个电场分量环绕,其中的一个电场分量被4个磁场分量环绕;给定相应初值,由有限时域差分法(FDTD)方法就可以逐步推进,求得以后各个不同时刻空间电磁场的分布[12,13]

图1

图1   FDTD计算采用的Yee晶胞格式

Fig.1   Yee cell format used in FDTD calculation


当进行大尺寸模型的正演计算或特殊模型下小网格正演计算时,由于均匀网格剖分会产生非常大的网格数量,这将导致计算量变大,所需的计算内存过大。为了降低计算内存,减少计算时间,有必要采取非均匀网格的剖分方案。非均匀网格是指在沿坐标轴的某一方向上网格的尺寸是变化的,一般情况下按照一定的系数进行等比例放大。在非均匀网格剖分中,为了保证计算精度,在模型中有源区域以及有异常体分布的区域采用均匀剖分,而对于远离源或者异常体的模型边界处,采用非均匀剖分。

2 装置布设形式和三维模型剖分

设定正演模型如图2所示。隧道模型正演计算采用规模为221×221×330的网格来进行异常体的剖分,采用非均匀网格剖分方案,在掌子面附近电磁场变化剧烈的部分和异常体部分采用0.2 m的网格进行均匀剖分,远离掌子面的部分其网格大小按一定的比例系数增大。

图2

图2   隧道模型示意

Fig.2   Schematic diagram of tunnel model


本次正演模拟等效洞径8 m的隧道,根据面积相近的原则,在实际正演计算中设计的隧道模型为一个截面为 7 m2长方体。发射源位于隧道掌子面的中心,两个电极分别位于掌子面两侧,电极距7m,布设方式如图3所示。发射源采用脉宽为1 ms的矩形脉冲,发射电流5 A。在利用瞬变电磁法进行隧道超前预报探测工作时,隧道腔体被认为是在均匀全空间内存在的高阻异常体。围岩电阻率100 Ω·m,隧道空腔电阻率设为104 Ω·m。本次正演计算均采用统一的对于双护盾TBM机模型进行剖分,建立的计算模型如图4所示。

图3

图3   隧道掌子面发射源与接收点布设示意

Fig.3   Layout of transmitting source and receiving point of tunnel face


图4

图4   TBM机计算模型

Fig.4   Calculation model of TBM


正演模拟中,围岩与隧道空腔的电导率以及激励源的施加方式与钻爆法施工下的计算模型相一致,其差别在于在原本的钻爆法隧道施工模型中加入了TBM机。TBM机距隧道掌子面的距离为1m。设计的计算模型如图5所示。

图5

图5   含TBM机的模型示意

Fig.5   Schematic diagram of calculation model with TBM


3 TBM机施工隧道电性源瞬变电磁响应特征

在TBM机施工条件下的隧道超前预报领域中,TBM机可被视为一个巨大的良导体,其所产生的强电磁干扰环境直接影响了瞬变电磁法的探测能力,导致瞬变电磁法不适应于TBM机施工条件下隧道超前预报工作。本文正是基于这一点针对与TBM机施工环境下的隧道超前预报工作提出了一些尝试性的探索。首先对常见的双护盾型TBM机进行精细化剖分,并加置于上节所述的纯隧道空腔模型中,以此来模拟TBM机施工下的隧道环境。从二次场的空间分布图和隧道掌子面上接收到的电磁场信号入手,分析TBM机对于电磁场的影响程度。对于在隧道掌子面上的瞬变电磁响应,本节尝试性的对接收点位置的选取问题进行了一些探索。最后针对不同的TBM机退刀距离对于瞬变电磁场的影响程度问题,本节也做了一些讨论。

为了研究单个电性源激励下电场的三个分量关断后的散射场在空间中的分布,绘制了关断后10 μs时刻电场在xOz平面上的等值线分布(图6,图7)。从图中可以看出,TBM机并未对隧道掌子面前方扩散的二次电场产生较大影响。

图6

图6   关断后10 μs 隧道模型掌子面前方电场分布

Fig.6   Electric field distribution in front of 10 μs tunnel model after closure


图7

图7   关断后10 μs TBM机模型掌子面前方电场分布

Fig.7   Electric field distribution in front of 10 μs TBM model hand after shut down


TBM机的存在会给磁场分量带来巨大的干扰,造成低阻假异常现象,直接影响了瞬变电磁法的探测能力。由图8可以看出TBM机对于电场水平分量的影响较小。对于电场的Ex分量,TBM机的存在未产生较大的影响,这两种情况下的电场衰减曲线几乎重合。对于Ey分量,TBM机的存在使衰减曲线出现了2次微弱的变号现象,在晚期衰减曲线趋于重合。对于Ez分量,TBM机的存在使该电场的强度增大,出现了变号现象,但晚期与纯隧道空腔模型下的衰减曲线趋于重合。另外,在电性源作为激发源时,对比电场三分量的场的幅值大小可以得出结论:在该种电性源装置下,电场由Ex分量主导,并且TBM机对于Ex分量的影响最小,故主要研究Ex分量的瞬变电磁响应特征。

图8

图8   隧道掌子面上观测点的电场ExEyEz分量衰减曲线对比(观测点见图3所示)

Fig.8   Comparison of attenuation curves of electric field ExEy and Ez components of observation points on tunnel face


在隧道建设工程中,TBM机不仅有切割岩石向前掘进的作用,其对隧洞内部的软弱岩体还具有支护的作用。鉴于此,TBM机实际的退刀距离应该越小越好。但同时TBM机距隧道的掌子面越近,其对瞬变电磁法的干扰就越大。综合考虑以上两点工程需求,为了研究不同退刀距离下TBM机对于二次电场的影响情况,并结合上文的分析结果,设计了退刀距离分别为0.2、0.5、1 m的计算模型。为了解关断后电场在模型内部的分布情况,选取关断后10 μs时刻绘制了电场中的3个分量在xOz平面上的等值线分布及衰减曲线(图9,图10)。可以看到,在TBM机不同退刀距离下,二次场的电场Ex分量并未受到TBM机的干扰。

图9

图9   TBM机不同退刀距离下关断后10 μs后Ex分量在xOz平面上的分布

Fig.9   10 μs after closing of TBM under different backoff distance distribution of electric field Ex component in xOz plane


图10

图10   TBM机不同退刀距离下的Ex分量的衰减曲线(观测点见图3所示)

Fig.10   TBM machine with different tool withdrawal decay curve of electric field Ex component


4 三维地质模型正演模拟

本节主要探索在TBM机施工条件下,本文所述探测方式下的隧道掌子面前方导水断层的瞬变电磁响应。在本次正演计算中充水断层的轴向与隧道的轴向一致,围岩电阻率为100 Ω·m,隧道空腔的电阻率为104 Ω·m,充水断层的规模为50 m×10 m×1 m,电阻率为1 Ω·m。计算模型如图11所示。本次正演模拟设定的双护盾TBM机距隧道掌子面的距离为0.2 m,充水断层分别位于隧道掌子面前方15、20、25 m处。

图11

图11   计算模型示意

Fig.11   Schematic diagram of calculation model


图12中可以看到,在TBM机施工环境下电场的水平分量对隧道前方的含水异常体有较强的探测能力,可以看到随着含水异常体距离隧道掌子面越来越远,异常响应越来越微弱,异常响应的凹点出现的时间越来越晚。根据这些异常响应特征,可以对异常的规模和异常体与隧道掌子面的距离进行定量估计。

图12

图12   TBM施工隧道含水断层距离隧道掌子面不同距离下Ex异常响应曲线(观测点见图3所示)

Fig.12   Distance between water bearing fault of TBM construction tunnel and tunnel face abnormal response curve of horizontal component of electric field at different distances


针对异常体距隧道掌子面15 m的正演模型,利用基于牛顿迭代法的全域视电阻率定义方法对电场Ex分量做了视电阻率的定义[14,15],其隧道掌子面原始电场Ex分量衰减信号和视电阻率曲线如图13所示。从图13b中可以直观地看出隧道掌子面前方存在一低阻异常体。

图13

图13   含水异常体距隧道掌子面15 m模型下的电场水平分量衰减曲线及视电阻率曲线

Fig.13   The water bearing abnormal body is 15 m away from the tunnel face attenuation curve and apparent resistivity of horizontal component of electric field


5 结论

本文针对隧道施工期突水突泥灾害超前精细化探测这一问题,尝试提出了一种基于电性源发射、电场分量采集的洞内瞬变电磁超前预报的新装置形式与观测模式。具体设计思路为:电性源通过供电电极与供电导线布置在掌子面上,之后,采用电场的水平分量作为观测分量。为验证本文所提出的装置形式与观测模式,采用了三维时域差分数值模拟方法,对钻爆法和TBM两类隧道环境内电性源激发的瞬变电磁场的分布规律与响应特征进行了正演模拟。通过对二次场的空间分布及其响应特征进行对比分析,得出的主要结论如下:

1)在采用电性源进行激发的条件下,瞬变电磁场的电场Ex分量的幅值最大,占主导地位。

2)TBM机作为一个巨大的良导体在隧道施工中会对瞬变电磁超前探测中的磁场信号带来较大干扰,但是相对于电性源,TBM机对于Ex分量的影响非常小,Ex分量对隧道掌子面前方的异常体仍存在明显的异常响应。据此可以进行对TBM机施工条件下隧道超前预报瞬变电磁响应视电阻率的定义。

3)本文提出的基于电性源激发、电场分量采集的装置形式与观测模式,能够满足近距离范围内隧道超前预报的要求。通过在掌子面上布设电极观测二次场电位差的观测方式,能够在很大程度上屏蔽TBM对响应信号的干扰作用。通过电极采集的二次场电位信号受TBM影响小,不需经过TBM干扰剔除。

参考文献

洪开荣.

我国隧道及地下工程发展现状与展望

[J]. 隧道建设, 2015,35(2):95-107.

DOI:10.3973/j.issn.1672-741X.2015.02.001      URL     [本文引用: 1]

分析我国隧道及地下工程的现状,包括铁路隧道、公路隧道、地铁隧道、水工隧洞、市政隧道和地下能源洞库等。总结近年来我国隧道及地下工程在各个方面的技术发展与创新,包括: 勘测与地质预报、设计方面、施工方面、防灾救灾与通风照明、风险控制与运营管理、防水排水新材料与新工艺应用等方面。重点对施工技术方面的技术发展与创新进行了较为详细的阐述,包括: 浅埋暗挖技术,盾构、TBM装备与施工技术,单护盾TBM,敞开式TBM,矩形顶管技术,盾构始发、到达零覆土技术,岩溶隧道处理技术,高地应力隧道变形控制及岩爆处理技术,钻爆法机械化作业线,瓦斯隧道问题,沉管隧道技术等。最后,对我国隧道及地下工程的发展进行展望,认为: 特长隧道将成为我国隧道建设的“新常态”,地铁工程将持续发展,城市铁路将逐步地下化,城市地下公路会悄然兴起,城市排蓄水工程深层隧道方案值得推广,地下空间开发利用与地下管廊工程将由原来的“单点建设、单一功能、单独运转”转化为“统一规划、多功能集成、规模化建设”的新模式,地下能源洞库将成为必然,南水北调西线工程值得期待,三大海峡通道的建设势在必行,互联互通的国际通道建设其隧道工程将会很多,也会遇到诸多挑战。总之,我国隧道及地下工程事业将会有更大的进步和更为广阔的发展空间。

Hong K R.

Current situation and prospect of tunnel and underground engineering development in China

[J]. Tunnel Construction, 2015,35(2):95-107.

DOI:10.3973/j.issn.1672-741X.2015.02.001      URL     [本文引用: 1]

The stateoftheart of the tunnels and underground works in China, including railway tunnels, highway tunnels, Metro tunnels, hydraulic tunnels, municipalservice tunnels and underground energy storage caverns, are analyzed. The technological development and innovation of tunnels and underground works in China are summarized in terms of geological prospecting and prediction, design, construction, disaster prevention, ventilation and lighting, risk control and operation management, and application of new materials and technologies related to waterproofing and drainage. The technological development and innovation of construction technologies, including shallowcover mining method, TBM (shield) equipment and tunneling technology, singleshield TBM, openmode TBM, rectangular pipe jacking method, shield launching and arriving at the ground surface, treatment of karst tunnel, deformation control technology and rock burst control technology for high ground stress tunnel, mechanization of drilling and blasting method, gas tunnel and immersed tunnel, are presented in detail. In the end, the development of tunnels and underground works in China is prospected. Conclusions drawn are as follows: There will be more and more extremelylong tunnels in China; Metro tunnels will be developed continuously; Underground urban railway tunnels will be built; urban underground highways will be build; Deep drainage tunnel system in urban area is worth popularizing; A new mode will be adopted for the development and use of underground space and underground utility tunnels; The underground energy storage cavern is a trend; The west line of SouthtoNorth Waterdiversion Project is worth to be focused; Bohai Strait Crossing Tunnel, Taiwan Strait Crossing Tunnel and Qiongzhou Strait Crossing Tunnel will be built definitely; There will be numerous tunnels to be constructed on the future international railways, and large challenges will be encountered. Briefly, there will be larger progress and larger development in the field of tunnels and underground works in China.

钱七虎.

地下工程建设安全面临的挑战与对策

[J]. 岩石力学与工程学报, 2012,31(10):1945-1956.

URL     [本文引用: 1]

详细介绍我国地下工程建设的安全管理现状和我国地下工程建设安全的严峻形势。从事故发生的类型和原因等对工程建设事故进行分析,指出责任事故及主观原因是构成地下工程建设安全管理巨大挑战的主因。结合海恩安全金字塔、海因里希安全法则、约翰逊的工程变化–失误理论模型等工程事故管理理论,提出工程事故预防的可行性和工程建设安全管理实施的对策。对重大地下工程建设中最突出的突水突泥地质灾害和岩爆地质灾害进行详细阐述,主要介绍突水突泥灾害的严重挑战、发生发展的科学规律、事故前兆信息分析以及地质超前预报等事故对策;介绍岩爆地质灾害的定义和分类、岩爆的预测机制、岩爆监测预报的理论基础和工程实践以及岩爆灾害的施工对策等。最后,针对地下工程建设的事故预防提出技术方法和管理手段的一些意见和建议。

Qian Q H.

Challenges and countermeasures for safety of underground engineering construction

[J]. Journal of Rock Mechanics and Engineering, 2012,31(10):1945-1956.

[本文引用: 1]

李术才, 刘斌, 孙怀凤, .

隧道施工超前地质预报研究现状及发展趋势

[J]. 岩石力学与工程学报, 2014,33(6):1090-1113.

URL     [本文引用: 2]

超前地质预报是隧道施工中必不可少的环节,对隧道信息化施工、灾害防治和安全保障具有重要作用。在收集整理国内外研究资料的基础上,总结钻爆法和TBM施工隧道的超前地质预报技术的研究现状。钻爆法施工隧道超前预报技术取得较大进展,涌现出一批专用的反射地震类、电磁类和电法类超前探测地球物理方法、技术与设备,逐步形成定量化探测思想和综合超前预报技术。认为基于多元地球物理信息融合与联合反演理论的综合超前地质预报技术是压制探测多解性、提高预报可靠性的可行有效途径;激发极化技术和核磁共振技术则由于其参数对水量的响应敏感性在定量探测水量方面显示出较好的应用前景。同时,TBM施工环境具有其特殊性和复杂性,少数几项专用探测技术的探测效果无法满足工程需要,总体上处于初步研究阶段,尚没有可用、可靠、有效的超前预报技术。结合课题组的研究特色,介绍3种自主研发的钻爆法隧道超前预报技术的最新进展及其用于TBM环境的可行性,提出了四阶段全过程的隧道综合超前地质预报体系,初步形成基于约束联合反演理论的综合预报方法,在钻爆法施工隧道定量化超前预报方面进行有益探索。最后,对隧道施工超前地质预报的发展趋势及其中的关键问题进行预测,认为以下4个方向是今后研究的重点和趋势:(1) 隧道施工定量化超前预报理论与技术的发展深化;(2) TBM施工隧道超前地质预报技术与装备;(3) 钻孔精细超前探测理论与技术;(4) 实时超前地质预报与施工灾害监测技术。

Li S C, Liu B, Sun H F, et al.

State of art and trends of advanced geological prediction in tunnel contruction

[J]. Chinese Journal of Rock Mechanics and Engineering, 2014,33(6):1090-1113.

URL     [本文引用: 2]

Advanced geological prediction has been an essential part in tunnel construction and has played an important role in aspects of informative construction,disaster prevention and safety guarantee in tunneling engineering. The state of the art and the trends of advanced geological prediction in drilling and blasting tunneling and TBM tunneling are summarized according to the available data. Great progress has been made in the advanced geological prediction in drilling and blasting tunneling with the emergence of a set of special methods,technologies and equipments,such as the reflection seismic method,the electromagnetic method and the electrical resistivity method,which gradually led to achieve quantitative detection and form a method of comprehensive advanced geological prediction. The comprehensive advanced geological prediction based on the fusion of multiple geophysical information and the method of combined inversion was considered an appropriate way for suppressing the multiple solutions and enhancing the reliability of advanced prediction. The methods of induced polarization and nuclear magnetic resonance have shown great prospects in the quantitative detection of water because of the sensitivity response of its parameters. Due to the particularity and complexity in the environment of TBM tunnel construction,some special detecting technologies did not meet the requirements of engineering practice which are at the preliminary stage of study and there have been no reliable and effective technologies for advanced prediction available generally. The latest developments in our group regarding three kinds of advanced prediction technology in drilling and blasting tunneling and its applicability to TBM tunnelling were described here. A system of comprehensive advanced geological prediction with four stages was proposed based on the theory of constrained joint inversion. The future studies are considered to be in the following four directions:(1) the further development of comprehensive quantitative detection during tunnel construction;(2) the technologies and equipments of advanced geological prediction in TBM tunnelling;(3) the theory and technology of precision probing at drilling;(4) the real time advanced prediction and construction disaster monitoring.

赵永贵, 刘浩, 孙宇, .

隧道地质超前预报研究进展

[J]. 地球物理学进展, 2003,18(3):460-464.

URL     [本文引用: 1]

隧道地质超前预报是工程地球物理研究中的疑难问题之一.目前应用的工程地质推断、地质雷达探测、反射地震负视速度法、TSP和TRT技术有一定的效果,但在目标判别、定位和岩体工程分类的可靠性方面还需要改进.

Zhao Y G, Liu H, Sun Y, et al.

Advance in advance prediction of tunnel geology

[J]. Progress in Geophysics, 2003,18(3):460-464.

URL     [本文引用: 1]

Tunnel geological prediction is an important one of engineering geophysics subjects. The techniques used now including engineering geology examination, GPR, TSP and TRT are efficient in some cases, but they need improving in reliability aspects of object recognition, position and rock engineering classification.

孙怀凤.

隧道含水构造三维瞬变电磁场响应特征及突水灾害源预报研究

[J]. 岩石力学与工程学报, 2015,34(3):648.

DOI:10.13722/j.cnki.jrme.2015.03.024      URL     [本文引用: 1]

Sun H F.

Three dimensional transient electromagnetic field response characteristics of tunnel water bearing structure and prediction of water inrush disaster source

[J]. Journal of Rock Mechanics and Engineering, 2015,34(3):648.

[本文引用: 1]

薛国强, 李貅.

瞬变电磁隧道超前预报成像技术

[J]. 地球物理学报, 2008,51(3):894-900.

URL     [本文引用: 1]

为解决隧道掌子面前含水带病害快速有效探测问题,尝试把对含水带结构反映敏感的瞬变电磁法引入到隧道掌子面前进行工作.文中介绍了瞬变电磁超前预报的工作装置形式;通过对掌子面特定环境的分析,提出引用“浮动薄板”理论,以二次电导微分参数为特征量建立隧道超前预报成像系统.推导出以等效导电薄板为虚拟像源的磁场响应与电导之间的非线性关系式. 通过引入辅助函数,采用遗传算法求得电导参数.最终以二次电导微分参数绘制成像剖面.对地电模型进行数值模拟和对应用实例进行了成像,结果表明成像方法对隧道掌子面前方水体病害预报效果明显.]]>

Xue G Q, Li X.

Advanced prediction imaging technology of TEM tunnel

[J]. Journal of Geophysics, 2008,51(3):894-900.

[本文引用: 1]

孙怀凤.

隧道瞬变电磁三维探测

[C]// 中国地球物理学会第二十七届年会论文集.中国地球物理学会, 2011.

[本文引用: 1]

Sun H F.

Three dimensional detection of transient electromagnetic in tunnel

[C]// Proceedings of the 27th Annual Meeting of China Geophysical Society. China Geophysical Society, 2011.

[本文引用: 1]

李貅. 瞬变电磁测深的理论与应用[M]. 西安: 陕西科学技术出版社, 2002.

[本文引用: 1]

Li X. Theory and application of TEM sounding [M]. Xi’an: Shaanxi Science and Technology Press, 2002.

[本文引用: 1]

陈卫营, 薛国强, 崔江伟.

电性源瞬变电磁发射源形变对观测结果影响分析

[J]. 地球物理学进展, 2015,30(1):126-132.

DOI:10.6038/pg20150119      URL     [本文引用: 1]

电性源瞬变电磁法的基本理论是建立在水平电偶极子的基础之上的, 但是实际生产中发射源常为接地长导线, 随着短偏移距观测方式的实现, 一方面发射源的尺寸不能忽略, 偶极子条件不再成立, 需要新的方式计算电磁场响应;另一方面, 受制于场地条件, 发射源可能无法水平、笔直地铺设, 这种源形态上的改变必然会对接收点处的响应带来影响, 并最终影响到数据解释.本文从电性源一维正演理论出发, 研究了发射源发生偏移和弯曲给电磁响应和视电阻率带来的影响, 并以某金矿探测为实例做出了验证和说明.研究认为源形态的改变对电磁响应和视电阻率造成的影响随着偏移距的改变而改变, 对于电磁响应, 偏移距越大影响越小, 而对于视电阻率, 偏移距越大影响越大.因此在实际生产中应尽量保证源的正规铺设, 详细记录实际源的坐标位置与形状, 并尽量在偏移距较小的区域内观测.

Chen W Y, Xue G Q, Cui J W.

Analysis of the influence of the deformation of the transient electromagnetic emission source of the electric source on the observation results

[J]. Progress in Geophysics, 2015,30(1):126-132.

DOI:10.6038/pg20150119      URL     [本文引用: 1]

The electric source transient electromagnetic method is based on the dipole theory, while in practice the source is usually a long grounded wire source which can not be regarded as a dipole. On the other hand, it is very hard to set a horizontal and straight wire source limited by the terrain in field work. This change of source will lead to distortions to the signal and data processing. In this paper, we studied the influence on the signal and apparent resistivity from an incline source and a bent source based on the 1D forward theory whereafter validated by a practical field work in gold mine. Results indicate that the influence on the signal will decrease but increase on the apparent resistivity with the increase of offset. We give an explanation on this phenomenon and strongly suggest the necessary of laying a normal source and recording the precise location and shape of the source.

卢绪山.

隧道TBM机瞬变电磁响应三维并行模拟及干扰去除研究

[D]. 西安:长安大学, 2014.

[本文引用: 1]

Lu X S.

Three dimensional parallel simulation of transient electromagnetic response of tunnel TBM and study of interference removal

[D]. Xi'an: Chang’an University, 2014.

[本文引用: 1]

孙怀凤.

隧道含水构造三维瞬变电磁场响应特征及突水灾害源预报研究

[D]. 济南:山东大学, 2013.

[本文引用: 1]

Sun H F.

Three dimensional transient electromagnetic response characteristics of tunnel water bearing structure and prediction of water inrush disaster source

[D]. Jinan:Shandong University, 2013.

[本文引用: 1]

葛德彪, 闫玉波. 电磁波时域有限差分方法(第三版)[M]. 西安: 西安电子科技大学出版社, 2011.

[本文引用: 1]

Ge D B, Yan Y B. Finite difference time domain method of electromagnetic wave (Third edition)[M]. Xi’an: Xi’an University of Electronic Science and Technology Press, 2011.

[本文引用: 1]

Yee K S.

Numerical solution of initial boundary value problems involving Maxwell’s equations

[J]. IEEE Trans. Antennas Propag, 1966,14(3):302-307.

DOI:10.1109/TAP.1966.1138693      URL     [本文引用: 1]

戚志鹏, 智庆全, 李貅, .

隧道瞬变电磁任意点垂直分量全域视电阻率解释方法

[J]. 岩石力学与工程学报, 2015,34(7):1426-1434.

[本文引用: 1]

Qi Z P, Zhi Q Q, Li X, et al.

Interpretation method of global apparent resistivity of vertical component at any point of tunnel transient electromagnetic field

[J]. Journal of Rock Mechanics and Engineering, 2015,34(7):1426-1434.

[本文引用: 1]

张莹莹, 李貅, 姚伟华, .

多辐射场源地空瞬变电磁法多分量全域视电阻率定义

[J]. 地球物理学报, 2015,58(8):2745-2758.

[本文引用: 1]

Zhang Y Y, Li X, Yao W H, et al.

Definition of multicomponent global apparent resistivity of multi radiation field source ground air transient electromagnetic method

[J]. Journal of Geophysics, 2015,58(8):2745-2758.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com