Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (2): 278-289    DOI: 10.11720/wtyht.2020.1428
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于数字递归陷波的多通道瞬变电磁法周期噪声去除研究
张文伟1,2, 底青云3,4,5(), 耿启立2, 雷达3,4,5, 王中兴3,4,5, 缪佳佳1,2
1. 中地装(北京)科学技术研究院有限公司,北京 100011
2. 中国地质装备集团有限公司,北京 100102
3. 中国科学院地质与地球物理研究所 中国科学院页岩气与地质工程重点实验室,北京 100029
4. 中国科学院 地球科学研究院,北京 100029
5. 中国科学院大学,北京 100049
The removal of MTEM periodic noise based on digital recursive notching
Wen-Wei ZHANG1,2, Qing-Yun DI3,4,5(), Qi-Li GENG2, Da LEI3,4,5, Zhong-Xin WANG3,4,5, Jia-Jia MIAO1,2
1. China Geological Equipment Research Institute Co., Ltd., Beijing 100011, China
2. China Geological Equipment Group Co., Ltd., Beijing 100102, China
3. Key Laboratory of Shale Gas and Geoengineering, CAS, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
4. Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
5. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(1860 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

多通道瞬变电磁数据受工频噪声干扰严重,去除周期性的工频噪声是多通道瞬变电磁法实测数据处理面临的重大难题。通过交换发射与接收位置避开电力线从源头上减小工频噪声只适合电力线分布少而简单、地形较平坦的情况,极性反转叠加法更适合阶跃激励电流,观测垂向电场仅适合一维电性结构。数字递归陷波能够相对稳健地压制周期性噪声,并且计算速度快,但是,数字递归陷波法本身也有问题:其一,反褶积前陷波会使大地脉冲响应出现周期性的凹陷;其二,数字递归陷波器本身存在瞬态响应。本文研究了利用数字递归陷波器去除多通道瞬变电磁数据的周期性噪声的几个关键问题。首先,对设计数字递归陷波器的传统零点极点法进行修正,推导了新的计算公式。新的设计方法采用陷波带宽计算滤波系数。陷波带宽具有明确的物理意义,便于分析问题。其次,研究反褶积后陷波,即直接对大地脉冲响应进行处理,并系统地分析了陷波带宽、初始条件、大地脉冲响应波形等因素对数字递归陷波器的瞬态响应及陷波效果的影响。研究表明,选择合适的初始条件可以有效压制数字递归陷波器的瞬态响应,从而消除大地脉冲响应包含的周期噪声。最后,应用反褶积后数字递归陷波方法处理了野外实测数据,得到了合理结果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张文伟
底青云
耿启立
雷达
王中兴
缪佳佳
关键词 多通道瞬变电磁法大地脉冲响应数字递归陷波瞬态响应初始条件    
Abstract

Multi-channel transient electromagnetic data suffer seriously from cultural noise, and removal of periodic cultural disturbance has been a major problem in the multi-channel transient electromagnetic method. In some cases with only quite a few power lines configured regularly, the power line interference can be reduced by exchanging the receiver and source. The method by reversing source current polarity then stacking them period-by-period works better for step-current source. When only homogeneous earth is considered, the perpendicular electric component, which is in fact noise, can be measured and then subtracted from the in-line electric component. Digital recursive notching is a relatively robust way in which the periodic noise can be suppressed. It is well known that recursive notching is very fast; however, holes resulting from pre-deconvolution notching and transient response of digital recursive notcher has to be highly regarded. In this paper, several key points in removal of periodic power line noise in multi-channel transient electromagnetic data using digital recursive notch are studied. First of all, a modified version of so-called zero-pole digital recursive notcher design method, where filter coefficients are evaluated from notch width that makes significant physical sense and make analysis more clear, is proposed. After that, research on post-deconvolution notching, which directly deals with earth impulse response, is conducted. In addition, factors influencing transient response and notch result, such as notch width, initial conditions, and shape of earth impulse response, are analyzed. The results indicate that appropriate selection of initial conditions can effectively reduce the transient response of digital recursive notcher and thus remove periodic noise in earth impulse. Finally, reasonable result is obtained by applying the post-deconvolution digital recursive notch to real field data.

Key wordsMTEM    earth impulse response    digital recursive notch    transient response    initial conditions
收稿日期: 2019-09-01      出版日期: 2020-04-22
:  P631  
基金资助:国家重点研发计划项目“地面探测装备试验与方法示范”(2018YFC0603206);中国科学院战略性先导科技专项(A类)“智能导钻系统集成与试验”(XDA14050100)
通讯作者: 底青云
作者简介: 张文伟(1989-),男,工程师,主要从事电磁法勘探数据处理及应用研究工作。Email: wwzhang0421@163.com
引用本文:   
张文伟, 底青云, 耿启立, 雷达, 王中兴, 缪佳佳. 基于数字递归陷波的多通道瞬变电磁法周期噪声去除研究[J]. 物探与化探, 2020, 44(2): 278-289.
Wen-Wei ZHANG, Qing-Yun DI, Qi-Li GENG, Da LEI, Zhong-Xin WANG, Jia-Jia MIAO. The removal of MTEM periodic noise based on digital recursive notching. Geophysical and Geochemical Exploration, 2020, 44(2): 278-289.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1428      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I2/278
Fig.1  陷波器原理示意
Fig.2  二阶数字递归陷波器几何解释
滤波系数 修正零点极点法(PZ) 双线性变换(BL) 全通滤波法(AP)
a1 -1.383474172275 -1.383474172275 -1.370446677272
a2 0.956527937624 0.956527937624 0.938104277507
b1 0.978263968812 0.978263968812 0.969052138753
Table 1  二阶数字递归陷波器滤波系数
Fig.3  数字递归陷波器的频谱
第一类 第二类 第三类
y-1=0 y-1=x0 y0=s0
y-2=0 y-2=x0 y1=s1
Table 2  二阶数字递归陷波器初始条件
Fig.4  数字递归陷波器瞬态响应
a—第一类初始条件;b—第二类初始条件;c—第三类初始条件
Fig.5  电阻率25 Ω·m均匀半空间偏移距1 000 m处大地脉冲响应及添加50 Hz正弦噪声后信号
Fig.6  大地脉冲响应周期噪声去除受瞬态响应的影响
a—第一类初始条件;b—第二类初始条件;c—第三类初始条件
Fig.7  非均匀半空间大地脉冲响应周期噪声去除
a—包含空气波的大地脉冲响应与含噪信号;b—不包含空气波的大地脉冲响应与含噪信号;c~e——为(a)中含噪信号的陷波结果;f~h—为(b)中含噪信号的陷波结果
Fig.8  第三类初始条件初始值个数对陷波结果的影响
a—图7a中含噪大地脉冲响应的陷波结果;b—图7b中含噪大地脉冲响应的陷波结果
Fig.9  MTEM野外实测数据周期噪声去除
a——发射电流; b—接收电压; c—直接计算的大地脉冲响应(虚线)与去除工频噪声后的大地脉冲响应(实线)
Fig.10  MTEM野外实测数据周期噪声去除
虚线为计算的大地脉冲响应,实线为去除工频噪声后的大地脉冲响应
[1] Wright D A, Ziolkowski A, Hobbs B . Hydrocarbon detection and monitoring with a multicomponent transient electromagnetic (MTEM) survey[J]. The Leading Edge, 2002,21(9):852-864.
[2] Ziolkowski A, Hobbs B A, Wright D A . Multitransient electromagnetic demonstration survey in France[J]. Geophyics, 2007,72(4):F197-F209.
[3] 底青云, 雷达, 王中兴 , 等. 多通道大功率电法勘探仪集成试验[J]. 地球物理学报, 2016,59(12):4399-4407.
[3] Di Q Y, Lei D, Wang Z X , et al. An integrated test of the multi-channel transient electromagnetic system[J]. Chinese Journal of Geophysics, 2016,9(12):4399-4407.
[4] Ziolkowski A . Developments in the transient electromagnetic method[J]. First break, 2007,25:99-106.
[5] Ziolkowski A, Wright D, Hall G, et al. Successful transient EM survey in the North Sea at 100 m water depth [C]// SEG Technical Program Expanded Abstracts 2008. Society of Exploration Geophysicists, 2008: 667-671
[6] Ziolkowski A, Parr R, Wright D , et al. Multi-transient electromagnetic repeatability experiment over the North Sea Harding field[J]. Geophyiscal Prospecting, 2010,58:1159-1176.
[7] Olalekan F, Di Q, Wang R, et al. Enhancement of subsurface resistivity distribution mapping using MTEM dense reverse source array: A case study of Anambra basin, Nigeria [C]// 7th International Conference on Environmental and Engineering Geophysics & Summit Forum of Chinese Academy of Engineering on Engineering Science and Technology, 2016: 8-10.
[8] Olalekan Fayemi, Qingyun Di . Qualitative analysis of MTEM response using instantaneous attributes[J]. Journal of Applied Geophysics, 2017,46:37-45.
[9] 齐彦福, 殷长春, 王若 , 等. 多通道瞬变电磁m序列全时正演模拟与反演[J]. 地球物理学报, 2015,58(7):2566-2577.
[9] Qi Y F, Yin C C, Wang R , et al. Multi-transient EM full-time forward modeling and inversion of m-sequences[J]. Chinese Journal of Geophysics, 2015,58(7):2566-2577.
[10] 涂小磊, 底青云, 王亚璐 . 多通道瞬变电磁有限差分正演模拟[J]. 地球物理学进展, 2015,30(5):2225-2232.
[10] Tu X L, Di Q Y, Wang Y L . Finite-difference approach for 3D multi-channel transient electromagnetic modeling[J]. Progress in Geophysics, 2015,30(5):2225-2232.
[11] 王若, 王妙月, 底青云 , 等. 多通道瞬变电磁法2D有限元模拟[J]. 地球物理学报, 2018,61(12):5084-5095.
[11] Wang R, Wang M Y, Di Q Y , et al. 2D FEM modeling on the multi-channel transient electromagnetic method[J]. Chinese Journal of Geophysics , 2018,61(12):5084-5095.
[12] 王显祥, 底青云, 王妙月 , 等. 基于m伪随机序列的电磁法抗噪能力分析[J]. 地球物理学报, 2016,59(5):1861-1874.
[12] Wang X X, Di Q Y, Wang M Y , et al. A study on the noise immunity of electromagnetic methods based on m pseudo-random sequence[J]. Chinese Journal of Geophysics, 2016,59(5):1861-1874.
[13] 张文伟, 真齐辉, 底青云 . 多通道瞬变电磁法频率域比值算法及视电阻率计算研究[J]. 地球物理学报, 2018,61(10):4171-4181.
[13] Zhang W W, Zhen Q H, Di Q Y . Study on MTEM frequency-domain ratio method and apparent resistivity calculation Chinese[J]. Journal of Geophysics, 2018,61(10):4171-4181.
[14] Wright D A, Ziolkowski A. Suppression of Noise in MTEM data [C]// SEG Technical Program Expanded Abstracts, 2007: 549-553.
[15] Spies B R . Local noise prediction filtering for central induction transient electromagnetic sounding[J]. Geophysics, 1988,8:1068-1079.
[16] Wright D A . Detection of hydrocarbons and their movement in a reservoir using time-lapse multichannel transient electromagnetic (MTEM) data[D]. Edinburgh: The University of Edinburgh, 2004.
[17] Strack K M, Hanstein T H, Eilenz H N . LOTEM data processing for areas with high cultural noise levels[J]. Physics of the Earth and Planetary Interiors, 1989,53:261-269.
[18] Strack K M . Exploration with deep transient electromagnetics[M]. Elsevier, Amsterdam-London-New York-Tokyo, 1992: 52-55.
[19] 张文伟 . 多通道瞬变电磁数据处理研究[D].北京:中国科学院大学. 2018.
[19] Zhang W W . Research on data processing of Multi-channel transient electromagnetic method[D]. Beijing: The University of Chinese Academy of Sciences, 2018.
[20] Pei Soo-Chang, Tseng Chien-Cheng . Elimination of AC interference in electrocardiogram using IIR notch filter with transient suppression[J]. IEEE Transactions on Biomedical Engineering, 1995,42(11):1128-1132.
[21] Carney R . Design of a digital notch filter with tracking requirements[J]. IEEE transactions on Space Electronics and Telemery, 1963, SET-9(4):109-114.
[22] Hirano K, Nishimura S, Mitra S K . Design of digital notch filters[J]. IEEE Transactions on Communications COM-22, 1974: 964-970.
[23] Pei Soo-Chang, Tseng Chien-Cheng . IIR multiple notch filter design based on allpass filter[J]. IEEE TENCON — Digital Signal Processing Applications, 1996: 267-271.
[24] Piskorowski J . Digital Q-varying notch IIR filter with transient suppression[J]. IEEE Transactions on Instrumentation and Measurement, 2010,59(4):866-872.
[25] Piskorowski J . Suppressing harmonic powerline interference using multiple-notch filtering methods with improved transient behavior[J]. Measurement, 2012,45:1350-1361.
[26] Smith S W. The scientist and engineer’s guide to aigital signal processing[M]. California Technical Publishing, San Diego, 1997: 328-332.
[27] Ziolkowski A . Wiener estimation of the Green’s function[J]. Geophysics, 2013,78(5):W31-W44.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com