Please wait a minute...
E-mail Alert Rss
 
物探与化探  2017, Vol. 41 Issue (6): 1027-1036    DOI: 10.11720/wtyht.2017.6.06
  论文 本期目录 | 过刊浏览 | 高级检索 |
青藏高原湿地冻土区活动层甲烷排放特征
张富贵1, 2, 张舜尧1, 2, 3, 唐瑞玲1, 王惠艳1, 2, 杨志斌1, 2, 周亚龙1, 2, 孙忠军1, 2
1.中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000;
2.地球表层碳-汞地球化学循环重点实验室,河北 廊坊 065000;
3.成都理工大学 地球科学学院,四川 成都 610000
Methane emission characteristics of active layer in wetland permafrost area of the Tibetan Plateau
ZHANG Fu-Gui1, 2, ZHANG Shun-Yao1, 2, 3, TANG Rui-Ling1, WANG Hui-Yan1, 2, YANG Zhi-Bin1, 2, ZHOU Ya-Long1, 2, SUN Zhong-Jun1, 2
1. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China;
2. Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy of Geological Sciences, Langfang 065000, China;
3. Chengdu University of Technology, Chengdu 610000, China
全文: PDF(935 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 青藏高原作为地球陆地碳循环系统的重要组成部分,一直是科学家和环保工作者关注的热点,天然气水合物的发现是否会引发环境和地质灾害再次引起科学家甚至政府部门的重视。本文选用甲烷通量、近地表大气甲烷浓度、土壤甲烷浓度和甲烷稳定碳同位素为监测指标,以祁连山天然气水合物试采区为研究区,开展甲烷排放监测。结果表明:① 祁连山高寒草原、高寒草甸区甲烷排放具有季节性变化和区域分布特点,最大排放值为19.2 mg/m2·h,最大吸收值为-108 mg/m2·h,表现出巨大的碳汇潜力,对青藏高原碳循环具有重要意义;② 甲烷碳同位素显示冻土区活动层大量存在微生物,10~30 cm甲烷主要微生物成因,微生物活跃期在夏季,冬季则减弱,微生物的代谢影响着甲烷的氧化和产生,嗜甲烷菌的存在对甲烷的排放起很大的控制作用;③ 试采前后近地表大气甲烷含量没有出现“爆炸式”增长,这与研究区天然气水合物的赋存状态和储量及试采方式有关;④ 甲烷排放受多种因素的影响,应加强对土壤温度、土壤湿度和pH值等因素的进一步研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:As an important part of the earth’s terrestrial carbon cycle, the Tibetan Plateau has become a hot place of warmhouse gas emission. The effect of gas hydrate exploration on ecological environment deserves much attention. In this paper, the authors studied the flux and isotope of subsurface methane in gas hydrate area of the Qilian Mountain. Some conclusions have been reached: 1. Methane emission from alpine steppe and alpine meadow shows seasonal features. The maximum emission value is 19.2 mg/m2·h and the maximum absorption value is -108 mg/m2·h, demonstrating the role of carbon sink. 2. Methane isotope data show that there exist a large number of microorganisms in the active layer of permafrost region. The methane in 10~30cm is the cause of microorganism, which is relatively active in summer and inactive in winner. The metabolic process of microorganism changes the oxidation-reduction of methane, and bacteria addicted to methane leads to the emission of methane. 3. As for the occurrence state of gas hydrate and the way of exploration, the phenomenon of blast increase of methane in near-surface atmosphere does not appear. 4. The emission of methane is influenced by many factors, and hence the study of temperature, moisture and PH value of soil needs further research.
收稿日期: 2017-09-08      出版日期: 2017-12-20
:  P632  
基金资助:中国地质调查局地质调查项目(DD20160226-2,DD20160224); 中国地质科学院基本科研业务费项目(AS2016Y01)
作者简介: 张富贵(1980-),男,工程师,硕士研究生,毕业于成都理工大学,现从事油气化探方法技术研究工作。Email:zhangfugui@igge.cn
引用本文:   
张富贵, 张舜尧, 唐瑞玲, 王惠艳, 杨志斌, 周亚龙, 孙忠军. 青藏高原湿地冻土区活动层甲烷排放特征[J]. 物探与化探, 2017, 41(6): 1027-1036.
ZHANG Fu-Gui, ZHANG Shun-Yao, TANG Rui-Ling, WANG Hui-Yan, YANG Zhi-Bin, ZHOU Ya-Long, SUN Zhong-Jun. Methane emission characteristics of active layer in wetland permafrost area of the Tibetan Plateau. Geophysical and Geochemical Exploration, 2017, 41(6): 1027-1036.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2017.6.06      或      https://www.wutanyuhuatan.com/CN/Y2017/V41/I6/1027
[1] 周幼吾,郭东信,邱国庆,等.中国冻土[M].北京:科学出版社,2000:329-353.
[2] 邢宇, 姜琦刚, 李文庆,等. 青藏高原湿地景观空间格局的变化[J]. 生态环境学报, 2009, 18(3):1010-1015.
[3] Parish F, Looi C C. Wetlands, biodiversity and clmatechange.Opnions and needs fro enhanced linkage between the Ramsar conventions on wetland[C]//Convention on biological diversity and UN framework convention on climate change, 1999, Tokio.
[4] Fenner N, Freeman C. Drought-induced carbon loss in peatlands[J]. Nature Geoscience, 2011, 4(12):895-900.
[5] Muhr J, Höhle J, Otieno D O, et al. Manipulative lowering of the water table during summer does not affect CO 2 emissions and uptake in a fen in Germany[J]. Ecological Applications A Publication of the Ecological Society of America, 2011, 21(2):391.
[6] Liu X D, Chen B D. Climatic warming in the Tibetan plateau during recent decades.[J]. International Journal of Climatology, 2015, 20(14):1729-1742.
[7] 祝有海, 张永勤, 文怀军,等. 青海祁连山冻土区发现天然气水合物[J]. 地质学报, 2009, 83(11):1762-1771.
[8] Lu Z, Zhu Y, Zhang Y, et al. Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai Province, China[J]. Cold Regions Science & Technology, 2011, 66(2-3):93-104.
[9] Kvenvolden K A. Methane hydrate — A major reservoir of carbon in the shallow geosphere?[J]. Chemical Geology, 1988, 71(1):41-51.
[10] Macdonald G J. Role of methane clathrates in past and future climates[J]. Climatic Change, 1990, 16(3):247-281.
[11] Kvenvolden K A. Gas hydrates—geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2):173-187.
[12] Dickens G R, Castillo M M, Walker J C. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate [J]. Geology, 1997, 25(3):259.
[13] Bains S, Corfield R M, Norris R D. Mechanisms of climate warming at the end of the paleocene[J]. Science, 1999, 285(5428):724.
[14] Dickens G R, O'Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J]. Paleoceanography, 1944, 10(6):965-971.
[15] Stephen P H,Darren R G,Hugh C J,et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event[J]. Letters to Nature, 2000, 406: 392-395.
[16] Jahren A H, Arens N C, Sarmiento G, et al. Terrestrial record of methane hydrate dissociation in the Early Cretaceous[J]. Geology, 2001, 29(2):159-162.
[17] Smith L M, Sachs J P, Jennings A E, et al. Light δ 13 C events during deglaciation of the East Greenland Continental Shelf attributed to methane release from gas hydrates[J]. Geophysical Research Letters, 2001, 28(11):2217-2220.
[18] Crémière A, Lepland A, Chand S, et al. Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet[J]. Nature Communications, 2016, 7:11509.
[19] Mestdagh T, Poort J, Batist M D. The sensitivity of gas hydrate reservoirs to climate change: Perspectives from a new combined model for permafrost-related and marine settings[J]. Earth-Science Reviews, 2017, 169.
[20] Lu Z, Zhu Y, Zhang Y, et al. Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai Province, China[J]. Cold Regions Science & Technology, 2011, 66(2-3):93-104.
[21] 文怀军, 鲁静, 尚潞君,等. 青海聚乎更矿区侏罗纪含煤岩系层序地层研究[J]. 中国煤炭地质, 2006, 18(5):19-21.
[22] 孙鸿烈. 青藏高原的形成演化[M]. 上海: 上海科学技术出版社,1996:168-192.
[23] 陈桂琛, 彭敏, 黄荣福,等. 祁连山地区植被特征及其分布规律[J]. 植物生态学报, 1994, 36(1):63-72.
[24] 秦彧, 宜树华, 李乃杰,等. 青藏高原草地生态系统碳循环研究进展[J]. 草业学报, 2012, 21(6):275-285.
[25] Pei Z Y, Ouyang H, Zhou C P, et al. Carbon balance in an alpine steppe in the Qinghai-Tibet plateau.[J]. Journal of Integrative Plant Biology,2009, 51(5):521-526.
[26] 王杰, 叶柏生, 张世强,等. 祁连山疏勒河上游高寒草甸CO 2 通量变化特征[J]. 冰川冻土, 2011, 33(3):646-653.
[27] Zhao L, Li Y, Xu S, et al. Diurnal, seasonal and annual variation in net ecosystem CO 2 exchange of an alpine shrubland on Qinghai-Tibetan Plateau[J]. Global Change Biology, 2006,12: 1940-1953.
[28] 程国栋, 王绍令. 试论中国高海拔多年冻土带的划分[J]. 冰川冻土, 1982, 4(2):1-17.
[29] 吴吉春, 盛煜, 于晖,等. 祁连山中东部的冻土特征(Ⅱ):多年冻土特征[J]. 冰川冻土, 2007, 29(3):426-432.
[30] 木里冻土队. 青海省木里煤田聚乎更矿区冻土与水源问题研究资料汇编:第一册[R].中国科学院兰州冰川冻土沙漠研究所,1971.
[31] 热水冻土队. 青海热水柴达尔地区的冻土特征[C]//中国科学院兰州冰川冻土沙漠研究所集刊:第1号.北京: 科学出版社,1976.
[32] 祝有海, 张永勤, 文怀军,等. 祁连山冻土区天然气水合物及其基本特征[J]. 地球学报, 2010, 31(1):7-16.
[33] Mcguire A D, Wirth C, Apps M, et al. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes[J]. Journal of Vegetation Science, 2010, 13(3):301-314.
[34] Christensen T R, Johansson T, Åkerman H J, et al. Thawing sub‐arctic permafrost: Effects on vegetation and methane emissions[J]. Geophysical Research Letters, 2004, 31(4):367-367.
[35] Sazonova T S, Romanovsky V E. A model for regional‐scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures[J]. Permafrost & Periglacial Processes, 2003, 14(2):125-139.
[36] Wu Q B, Li X, Li W J. The prediction of permafrost change along the Qinghai-Tibet Highway, China[J]. Permafrost & Periglacial Processes, 2015, 11(4):371-376.
[37] 张洪涛, 张海启, 祝有海. 中国天然气水合物调查研究现状及其进展[J]. 中国地质, 2007, 34(6):953-961.
[38] Bains S, Corfield R M, Norris R D. Mechanisms of climate warming at the end of the paleocene[J]. Science, 1999, 285(5428):724.
[39] 黄霞, 祝有海, 王平康,等. 祁连山冻土区天然气水合物烃类气体组分的特征和成因[J]. 地质通报, 2011, 30(12):1851-1856.
[40] 卢振权, 吴必豪, 祝有海. 南海潜在天然气水合物藏的成因及形成模式初探[J]. 矿床地质, 2002, 21(3):232-239.
[41] Abrams M A. Significance of hydrocarbon seepage relative to petroleum generation and entrapment[J]. Marine & Petroleum Geology, 2005, 22(4):457-477.
[42] Kessler J D, Weber T C. A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico[J]. Science, 2011, 331(6015):312.
[43] Warner N R, Kresse T M, Hays P D, et al. Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas[J].2013,35(4):207-220.
[44] Black C K, Davis S C, Hudiburg T W, et al. Elevated CO 2 and temperature increase soil C losses from a soy-maize ecosystem[J]. Glob Chang Biol, 2016,23(1):1-11.
[45] Liu B, Mou C, Yan G, et al. Annual soil CO 2 efflux in a cold temperate forest in northeastern China: effects of winter snowpack and artificial nitrogen deposition[J]. Scientific Reports, 2016, 6(11):18957.
[46] 汤玉平, 丁相玉, 吴向华,等. 中国主要含油气盆地区域地球化学场参数特征及其成因研究[J]. 石油勘探与开发, 2001, 28(3):1-4.
[47] Ding J, Chen L, Ji C, et al. Decadal soil carbon accumulation across Tibetan permafrost regions[J]. Nature Geoscience, 2017.
[48] Nisbet E G. The end of ice age[J]. Canadian Journal of Earth Sciences, 2011, 27(1):148-157.
[49] Dickens G R, Castillo M M, Walker J C. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate[J]. Geology, 1997, 25(3):259.
[50] Bains S, Corfield R M, Norris R D. Mechanisms of climate warming at the end of the paleocene[J]. Science, 1999, 285(5428):724.
[51] Kvenvolden K A. Methane hydrates and global climate[J]. Global Biogeochemical Cycles, 1988, 2(3):221-229.
[52] 林清,金会军,陈国栋,等.青藏高原五道梁冻土活动层表面二氧化碳和甲烷的排放[J].冰川冻土,1996,18(4):325-329.
[53] 金会军,陈国栋.冻土区甲烷排放研究进展[J].地球科学进展,1997,12(3):276-281.
[54] 王艳发, 魏士平, 崔鸿鹏,等. 祁连山冻土区土壤活动层与冻土层中甲烷代谢微生物群落结构特征[J]. 应用与环境生物学报, 2016, 22(4):592-598.
[55] Sun Zhongjun,Yang Zhibin,Meihai,et al. Geochemical characteristics of the shallow soil above the Muli gas hydrate reservoir in the permafrost region of the Qilian Mountains, China[J]. Journal of Geochemical Exploration, 2014, 139: 160-169.
[56] 金会军,陈国栋.冻土区甲烷排放研究进展[J].地球科学进展,1997,12(3):276-281.
[57] 冯冬霞, 高晓清, 周亚,等. 青藏高原大气甲烷浓度时空分布变化特征[J]. 气候与环境研究, 2017, 22(3):346-354.
[58] SB, Zhou JZ, Ouyang ZY. Research of methane metabolic microbial community in soils of slash pine plantation and Masson pine plantation [J]. ActaEcol Sin, 2012, 32(8): 2458-2465.
[59] 焦露, 苏新, 黄霞,等. 祁连山冻土区水合物DK3和DK6钻孔中微生物脂肪酸特征及意义[J]. 地球学报, 2014(5):599-607.
[60] 戴金星. 天然气碳氢同位素特征和各类天然气鉴别 [J].天然气地球科学, 1993, 4 (2-3): 1.
[61] 杨志斌, 孙忠军, 李广之,等. 青海省天峻县木里地区天然气水合物发现区浅表地球化学特征[J]. 地质通报, 2011, 30(12):1883-1890.
[62] 孙忠军,杨志斌,秦爱华,等.中纬度带天然气水合物地球化学勘查技术[J].吉林大学学报:地球科学版,2014,44(4):1063-1070.
[63] Trumbore S E, Chadwick O A, Amundson R. Rapid Exchange between Soil Carbon and Atmospheric Carbon Dioxide Driven by Temperature Change[J]. Science, 1996, 272(5260):393-396.
[1] 王斌, 罗彦军, 孟广路, 张晶, 张海迪, 陈博, 何子鑫. 吉尔吉斯斯坦Au、Cu、Pb、Zn、W、Sn矿床潜力评价——基于1∶100万地球化学数据[J]. 物探与化探, 2022, 46(1): 58-69.
[2] 赵泽霖, 李俊建, 张彤, 倪振平, 彭翼, 宋立军. 华北地区稀土矿床特征及找矿方向[J]. 物探与化探, 2022, 46(1): 46-57.
[3] 李建亭, 刘雪敏, 王学求, 韩志轩, 江瑶. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别[J]. 物探与化探, 2022, 46(1): 32-45.
[4] 孟伟, 莫春虎, 刘应忠. 黔西北地区土壤重金属地球化学背景及管理目标值[J]. 物探与化探, 2022, 46(1): 250-257.
[5] 赵筱媛, 杨忠芳, 程惠怡, 马旭东, 王珏, 李志坤, 王琛, 李明辉, 雷风华. 四川邻水县华蓥山—西槽土壤Cu地球化学特征与生态健康[J]. 物探与化探, 2022, 46(1): 238-249.
[6] 王志强, 杨建锋, 魏丽馨, 石天池, 曹园园. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237.
[7] 邹雨, 王国建, 杨帆, 陈媛. 含油气盆地甲烷微渗漏及其油气勘探意义研究进展[J]. 物探与化探, 2022, 46(1): 1-11.
[8] 方永坤, 曹成刚, 董峻麟, 李领贵. 青海省天峻县阳康地区花岗岩岩体锆石U-Pb年代学及地球化学特征研究[J]. 物探与化探, 2021, 45(6): 1367-1377.
[9] 庞文静, 陈贝贝, 周涛, 黄柔睿, 周云云, 郭福生, 吴志春, 谢财富. 相山矿田与冷水坑矿田多金属成矿特征对比[J]. 物探与化探, 2021, 45(6): 1416-1424.
[10] 唐瑞, 欧阳菲, 罗先熔, 郑超杰, 汤国栋, 刘攀峰, 蔡叶蕾, 杨笑笑. 相山矿田游坊地区地电提取找矿预测[J]. 物探与化探, 2021, 45(6): 1425-1438.
[11] 张春来, 杨慧, 黄芬, 曹建华. 广西马山县岩溶区土壤硒含量分布及影响因素研究[J]. 物探与化探, 2021, 45(6): 1497-1503.
[12] 杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 2021, 45(5): 1147-1156.
[13] 奚小环, 侯青叶, 杨忠芳, 叶家瑜, 余涛, 夏学齐, 成杭新, 周国华, 姚岚. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108.
[14] 刘道荣, 焦森. 天然富硒土壤成因分类研究及开发适宜性评价[J]. 物探与化探, 2021, 45(5): 1157-1163.
[15] 胡斌, 李广之. 油气化探分析测试质量监控与评估方法探讨[J]. 物探与化探, 2021, 45(4): 1043-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com