Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (1): 32-45    DOI: 10.11720/wtyht.2022.2585
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别
李建亭1(), 刘雪敏1(), 王学求2, 韩志轩2, 江瑶1
1.成都理工大学 地球科学学院,四川 成都 610059
2.中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
Tracing and identification of concealed Luoboling copper-molybdenum deposit in Fujian Province using trace elements and isotopes in fine-grained surface soils
LI Jian-Ting1(), LIU Xue-Min1(), WANG Xue-Qiu2, HAN Zhi-Xuan2, JANG Yao1
1. College of Earth Sciences,Chengdu University of Technology, Chengdu 610059, China
2. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
全文: PDF(4571 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在已知隐伏矿——罗卜岭斑岩型铜钼矿床上方采集了表层土壤以及典型钻孔中的矿石和围岩样品,分析了6个微量元素(Cu、Mo、Ba、Pb、Zn、V)的含量变化以及硫、铅同位素的组成特征,来验证土壤金属活动态测量技术、微细粒级土壤全量测量技术在隐伏矿区的找矿效果,并根据铅、硫同位素的组成特征来识别地表地球化学异常的来源。研究表明:微细粒级土壤全量测量技术对该矿区深部矿体的指示效果最好,其中Cu、Ba、Mo的含量高值区与深部隐伏矿体的展布相关性较强。土壤金属活动态、微细粒级土壤全量均显示出14、15号采样点下方极有可能存在着隐伏矿体,同时两种测量方法均可以根据V、Pb、Zn的含量变化较为准确地圈定出接近地表矿化岩体的范围。由于异常区土壤全量的硫同位素组成大多数信息继承自非赋矿围岩,掩盖了来自深部矿体的贡献,故在本矿区用硫同位素指示地表土壤中的异常来源效果较差,建议测量土壤金属活动态中的硫同位素组成应更为合理。异常区土壤全量的铅同位素继承了来自深部矿体铅同位素的特征,直接为微细粒级土壤全量测量技术在覆盖区的矿产勘查提供了证据,同时206Pb/204Pb在地表微细粒级土壤全量中的变化与下伏隐伏矿体的展布相关性较强,可以有效指示深部隐伏矿体。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李建亭
刘雪敏
王学求
韩志轩
江瑶
关键词 罗卜岭铜钼矿床铅、硫同位素微量元素土壤微细粒测量覆盖区找矿    
Abstract

This paper collected surface soil above the known concealed deposit the Luoboling porphyry-type copper-molybdenum deposit and acquired samples of ore and surrounding rocks from typical boreholes of the deposit. Then, it analyzed the changes in the contents of six trace elements (Cu, Mo, Ba, Pb, Zn, and V) and the isotopic composition of S and Pb, aiming to verify the ore prospecting effects of the measurement technology of mobile forms of metals in soil and full analysis of fine-grained soil in concealed deposits and to identify the sources of surface geochemical anomalies according to the isotopic composition of Pb and S. The study results are as follows. The total analysis of fine-grained soil showed the best effects in indicating deep ore bodies in the Luoboling deposit, and the areas with high contents of Cu, Ba, and Mo correlated strongly with the distribution of deeply concealed ore bodies. Both the mobile forms of metals in the soil and the total analysis of fine-grained soil showed that it is quite possible that concealed ore bodies occur below sampling points No.14 and 15. Meanwhile, the changes in the contents of V, Pb, and Zn obtained using both methods can accurately delineate the scopes of mineralized rock masses close to the ground surface. However, most of the total sulfur isotopic composition in the soil of anomaly zones inherits from the non-ore-hosting surrounding rocks and masked the contribution from the deep ore bodies. Consequently, sulfur isotopes showed poor effects in indicating the sources of anomalies in the surface soil in the Luoboling deposit. Therefore, it is more reasonable to measure the sulfur isotopic composition according to the mobile forms of metals in the soil. In contrast, the total Pb isotopes in the soil of the anomaly zones inherit the characteristics of the Pb isotopes of deep ore bodies. This serves as direct evidence of full analysis of fine-grained soil in the mineral exploration of coverage areas.Moreover, the changes in the 206Pb/204Pb ratio in the full analysis of surface fine-grained soil correlated strongly with the distribution of underlying concealed ore bodies and thereby can effectively indicate the deep concealed ore bodies.

Key wordsLuoboling copper-molybdenum deposit    lead and sulfur isotopes    trace elements    fine particle soil survey    ore prospecting of coverage areas
收稿日期: 2020-12-25      修回日期: 2021-09-13      出版日期: 2022-02-20
ZTFLH:  P632  
基金资助:国家重点研发计划项目“覆盖区地球化学异常源示踪与判别”(2016YFC0600604)
通讯作者: 刘雪敏
作者简介: 李建亭(1994-),男,硕士,主要从事穿透性地球化学勘查技术学习与研究工作。Email: 448287250@qq.com
引用本文:   
李建亭, 刘雪敏, 王学求, 韩志轩, 江瑶. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别[J]. 物探与化探, 2022, 46(1): 32-45.
LI Jian-Ting, LIU Xue-Min, WANG Xue-Qiu, HAN Zhi-Xuan, JANG Yao. Tracing and identification of concealed Luoboling copper-molybdenum deposit in Fujian Province using trace elements and isotopes in fine-grained surface soils. Geophysical and Geochemical Exploration, 2022, 46(1): 32-45.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.2585      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I1/32
Fig.1  福建紫金山矿田地质简图(a)及罗卜岭矿区地质简图(b)(修改自Zhong J等[22])
1—早白垩世罗卜岭花岗闪长斑岩;2—早白垩世四坊花岗闪长岩; 3—早白垩世火山石帽山岩体;4—第四系冲积沉积物;5—晚侏罗世才溪岩体;6—中侏罗世紫金山复式岩体;7—白垩纪英安玢岩;8—白垩纪隐爆角砾岩;9—早石炭世岩体(林地组);10—晚泥盆世碎屑沉积岩体(天瓦岽组、桃子坑组);11—下震旦统楼子坝群;12—断层;13—264号测线; 14—经典矿床;15—矿化蚀变带(K-Phl:弱钾化-绢英岩化蚀变带,Chl-Phl:弱绿石化-绢英岩化蚀变带,Kl-Phy:高岭石化-黄铁绢英岩化,Ms-Di-Alu:白云岩化-地开石化-明矾石化);16—研究区;17—土壤采样点位;18-钻孔
介质 检测项目 分析实验室 主要检测方法和仪器
土壤 微细粒全量Cu、Mo、Ba、Pb、Zn、V 河南省岩矿测试中心 DZ/T 0064.80—93
XSERIES 2 电感耦合等离子质谱仪
微细粒金属活动态Cu、Mo、Ba、Pb、Zn、V
硫、铅同位素 核工业北京地质研究院 DZ/T 0184.12—1997
ISOPROBE-T 热表面电离质谱仪
围岩
矿石
(单矿物)
DZ/T 0184.15—1997
Deltavplus 气体同位素质谱计
Table 1  各介质的分析方法
元素 最大值 最小值 中位数 极值比 平均值 标准差 变异系数 福建省土壤背景值 富集系数
Cu 234 23 73.1 10.1 100.35 63.35 0.63 22.6 4.44
Mo 46.14 1.9 11.4 24.28 14.32 12.2 0.85 5.14 2.79
Ba 732.5 71.5 304.5 10.24 339.04 216.57 0.64 300 1.13
Pb 237 31.8 92.1 7.45 110.67 59.56 0.54 34.9 3.17
Zn 41.6 16.8 30.4 2.48 28.94 7.85 0.27 82.7 0.35
V 91.55 18.96 53.88 4.83 55.27 20.75 0.38 78.3 0.71
Table 2  罗卜岭铜钼矿区264号测线微细粒级土壤6个微量元素全量统计参数(n=15)
Fig.2  福建罗卜岭铜钼矿区264号勘探线微细粒级土壤6个微量元素的全量折线图(修改自赵辰等[34])
元素 最大值 最小值 极值比 中位值 平均值 占微细粒全量百分比/%
Cu 17.37 1.04 16.7 3.99 5.28 5.26
Mo 278.00 25.00 11.12 54.30 75.29 0.53
Ba 2.28 0.37 6.16 0.54 0.51 0.15
Pb 20.75 0.64 32.42 8.30 6.06 5.48
Zn 4.30 1.41 3.05 1.91 2.06 7.12
V 765.00 42.85 17.85 257.00 296.60 0.55
Table 3  罗卜岭铜钼矿区264号测线微细粒级土壤金属活动态含量统计参数(n=15)
Fig.3  罗卜岭铜钼矿区264号勘探线微细粒级土壤6个微量元素的金属活动态折线图
样品编号 点性 δ34S/‰ 样品编号 点性 δ34S/‰
264-1 背景 6.9 VII03-7 黄铁矿 2
264-2 背景 5 VII03-8 黄铁矿 2.2
264-3 背景 10.3 TZ11* 黄铁矿 1.7
264-4 背景 -0.4 TZ16* 黄铁矿 2.6
264-5 背景 4.2 TZ19* 黄铁矿 1.9
264-6 异常 5.4 TZ21* 黄铁矿 1.8
264-7 异常 6.6 ZK36-282-1* 黄铁矿 2.7
土壤 264-8 异常 7 矿石 ZK36-282-2* 黄铁矿 1.8
264-9 异常 12.3 ZK001-1* 黄铁矿 0.5
264-10 异常 15.3 ZK001-2* 黄铁矿 0.9
264-11 异常 13.6 ZK25-4* 黄铁矿 0.9
264-12 异常 13.6 ZKIX-09* 辉钼矿 2.2
264-13 异常 14.1 ZK001-2* 闪锌矿 -1.6
264-14 异常 1.8 ZK25-4* 方铅矿 -1.2
264-15 异常 8
IX04-7 黄铁矿 0.6 IX04-20 非赋矿围岩 11.6
IX04-8 黄铁矿 0.9 VI03-4 非赋矿围岩 16.6
IX04-10 黄铁矿 2.2 围岩 VI03-20 非赋矿围岩 10.2
VI03-9 黄铁矿 1.7 VII03-15 非赋矿围岩 11.1
VI03-10 黄铁矿 1.5 VII03-16 非赋矿围岩 6.2
Table 4  罗卜岭铜钼矿区细粒级土壤、矿石、围岩样品的硫同位素数据(n=39)
Fig.4  罗卜岭铜钼矿区矿石、围岩、土壤背景和土壤异常的硫同位素组成
矿石 围岩 土壤背景 土壤异常
矿石 1
围岩 0 1
土壤背景 0 0.04 1
土壤异常 0 0.57 0.08 1
Table 5  罗卜岭矿区不同介质硫同位素数据单因素方差分析P
Fig.5  罗卜岭矿区264号勘探线土壤微细粒级全量中硫同位素组成分布
样品编号 点性 208Pb/204Pb 误差 207Pb/204Pb 误差 206Pb/204Pb 误差
264-1 背景 38.799 0.006 15.655 0.002 18.555 0.003
264-2 背景 38.787 0.003 15.64 0.001 18.578 0.001
264-3 背景 38.805 0.003 15.639 0.001 18.582 0.002
264-4 背景 38.815 0.004 15.649 0.002 18.611 0.002
264-5 背景 38.846 0.003 15.661 0.001 18.645 0.001
264-6 异常 38.804 0.003 15.651 0.001 18.607 0.001
264-7 异常 38.694 0.003 15.626 0.001 18.481 0.001
土壤 264-8 异常 38.788 0.003 15.655 0.001 18.529 0.002
264-9 异常 38.751 0.003 15.646 0.001 18.521 0.001
264-10 异常 38.773 0.005 15.651 0.002 18.492 0.002
264-11 异常 38.694 0.004 15.627 0.002 18.493 0.002
264-12 异常 38.754 0.003 15.637 0.001 18.508 0.001
264-13 异常 38.728 0.004 15.635 0.001 18.48 0.001
264-14 异常 38.774 0.005 15.636 0.002 18.495 0.002
264-15 异常 38.773 0.003 15.642 0.001 18.54 0.002
IX04-7 黄铁矿 38.767 0.007 15.634 0.008 18.509 0.008
IX04-8 黄铁矿 38.951 0.007 15.595 0.003 18.537 0.003
IX04-10 黄铁矿 38.899 0.004 15.629 0.001 18.491 0.002
VI03-10 黄铁矿 39.067 0.007 15.643 0.003 18.764 0.003
VII03-7 黄铁矿 39.215 0.009 15.618 0.003 18.617 0.004
VII03-8 黄铁矿 38.864 0.008 15.622 0.003 18.634 0.004
M1# 辉钼矿 38.741 0.001 15.655 0.001 18.479 0.001
M4# 辉钼矿 38.732 0.011 15.666 0.004 18.48 0.005
M5# 辉钼矿 38.751 0.001 15.667 0.001 18.455 0.002
Py5# 黄铁矿 38.67 0.013 15.666 0.005 18.493 0.006
Py8# 黄铁矿 38.749 0.007 15.667 0.003 18.417 0.004
Py9# 黄铁矿 38.752 0.003 15.661 0.001 18.486 0.002
矿石 Py10# 黄铁矿 38.788 0.003 15.668 0.001 18.476 0.002
Py11# 黄铁矿 38.799 0.001 15.67 0.001 18.491 0.001
Py18# 黄铁矿 38.773 0.004 15.668 0.002 18.453 0.002
Py20# 黄铁矿 38.736 0.001 15.655 0.001 18.473 0.001
Py23# 黄铁矿 38.775 0.003 15.658 0.002 18.469 0.002
Py32# 黄铁矿 38.743 0.001 15.654 0.001 18.482 0.001
Py33# 黄铁矿 38.812 0.007 15.663 0.003 18.502 0.004
Py34# 黄铁矿 38.838 0.007 15.674 0.003 18.503 0.004
Py35# 黄铁矿 38.674 0.002 15.644 0.001 18.426 0.001
Py36# 黄铁矿 38.772 0.002 15.66 0.001 18.503 0.001
Py37# 黄铁矿 38.815 0.005 15.66 0.002 18.505 0.002
Py39# 黄铁矿 38.811 0.008 15.67 0.003 18.498 0.004
Py40# 黄铁矿 38.719 0.002 15.65 0.001 18.456 0.001
IX04-20 非赋矿岩体 39.358 0.004 15.659 0.001 19.243 0.002
VI03-4 非赋矿岩体 39.854 0.004 15.709 0.002 19.86 0.002
VI03-20 非赋矿岩体 39.463 0.006 15.668 0.002 19.349 0.003
VII03-15 非赋矿岩体 39.025 0.003 15.647 0.001 18.936 0.001
VII03-17 非赋矿岩体 39.352 0.004 15.695 0.001 19.253 0.002
围岩 ZK4012-1# 非赋矿岩体 38.721 0.001 15.647 0.001 18.575 0.001
16-308# 非赋矿岩体 38.823 0.001 15.665 0.001 18.525 0.001
ZL-1-4# 非赋矿岩体 38.777 0.003 15.654 0.001 18.538 0.001
IX-01-3# 非赋矿岩体 38.864 0.002 15.648 0.001 18.634 0.001
IX01-4# 非赋矿岩体 38.826 0.001 15.654 0.001 18.589 0.001
IX01-7# 非赋矿岩体 38.785 0.001 15.643 0.001 18.565 0.001
IX01-10# 非赋矿岩体 38.803 0.002 15.652 0.001 18.627 0.001
Table 6  罗卜岭铜钼矿区细粒级土壤、矿石、围岩样品的铅同位素数据(n=52)
Fig.6  罗卜岭铜钼矿区矿石、围岩、土壤背景和土壤异常208Pb/204Pb-206Pb/204Pb(a)、207Pb/204Pb-206Pb/204Pb(b)图解
铅同位素 介质 矿石 围岩 土壤背景 土壤异常
206Pb/204Pb 矿石 1
围岩 0 1
土壤背景 0.01 0.16 1
土壤异常 0.66 0.01 0 1
207Pb/204Pb 矿石 1
围岩 0.2 1
土壤背景 0.67 0.2 1
土壤异常 0.07 0.01 0.16 1
208Pb/204Pb 矿石 1
围岩 0 1
土壤背景 0.97 0.16 1
土壤异常 0.17 0.02 0.01 1
Table 7  罗卜岭矿区不同介质铅同位素数据单因素方差分析P
Fig.7  罗卜岭矿区不同介质207Pb/204Pb-206Pb/204Pb图解
Fig.8  罗卜岭矿区264勘探线微细粒级土壤全量中铅同位素组成分布
[1] Ryss Y S, Goldber G I S. The partial extraction of metals (CHIM) method in mineral exploration[J]. Method and Technique, 1973,84:5-19.
[2] Kristiansson K, Malmqvist L. Evidence for nondiffusive transport of 86Rn in the ground and a new physical model for the transport[J]. Geophysics, 1982,47(10):1444-1452.
doi: 10.1190/1.1441293
[3] Clark J R. Enzyme-induced leaching of B-horizon soils for mineral exploration in areas of glacial overburden[J]. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 1993,102:B19-B29.
[4] Mann A W, Birrell R D, Mann A T, et al. Application of the mobile metal ion technique to routine geochemical exploration[J]. Journal of Geochemical Exploration, 1988,61:87-102.
doi: 10.1016/S0375-6742(97)00037-X
[5] Wang X Q, Cheng Z Z, Lu Y X, et al. Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains[J]. Journal of Geochemical Exploration, 1997,58:63-72.
doi: 10.1016/S0375-6742(96)00052-0
[6] Wang X Q. Leaching of mobile forms of metals in overburden: development and application[J]. Journal of Geochemical Exploration, 1998,61:39-55.
doi: 10.1016/S0375-6742(97)00039-3
[7] 王学求. 寻找和识别隐伏大型特大型矿床的勘查地球化学理论方法与应用[J]. 物探与化探, 1998,22(2):81-108.
[7] Wang X Q. Geochmical methods and application for glant ore deposits in concealed terrains[J]. Geophysical and Geochemical Exploration, 1998,22(2):81-108.
[8] 汪明启, 高玉岩. 利用铅同位素研究金属矿床地气物质来源:甘肃蛟龙掌铅锌矿床研究实例[J]. 地球化学, 2007,36(4):391-399.
[8] Wang M Q, Gao Y Y. Tracing source of geogas with lead isotopes: A case study in Jiaolongzhang Pb-Zn deposit, Gansu Province[J]. Geochimica, 2007,36(4):391-399.
[9] 徐洋, 汪明启, 高玉岩, 等. 利用铅同位素研究山东邹平王家庄铜矿地气物质来源[J]. 物探与化探, 2014,38(1):23-27.
[9] Xu Y, Wang M Q, Gao Y Y, et al. Tracing the source of geogas mathrials with the leaad isotope method in the Wangjiazhuang copper ore deposite of Zouping, Shandong Province[J]. Geophysical and Geochemical Exploration, 2014,38(1):23-27.
[10] 刘雪敏, 陈岳龙, 王学求. 深穿透地球化学异常源同位素识别研究:以新疆金窝子金矿床、内蒙古拜仁达坝—维拉斯托多金属矿床为例[J]. 现代地质, 2012,26(5):1104-1116.
[10] Liu X M, Chen Y L, Wang X Q. Research on isotope identification for anomalous sources of deeppenetration geochemistry: two cases of Jinwozi Au deposit, Xinjiang and Bairendaba-weilasituo polymetallic deposit, Inner Mongolia[J]. Modern Geology, 2012,26(5):1104-1116.
[11] Saunders J A, Mathur R, Kamenov G D, et al. New isotopic evidence bearing on bonanza (Au-Ag) epithermal ore-forming proceses[J]. Mineralium Deposita, 2015,51(1):1-11.
doi: 10.1007/s00126-015-0623-y
[12] Matthew I L, Brian L C, Wayne D G. Lead isotopes in ground and surface waters: fingerprinting heavy metal sources in mineral exploration[J]. Geochemistry: Exploration, Environment, Analysis, 2009,9:115-123.
doi: 10.1144/1467-7873/09-195
[13] Caritat P D, Kirste D, Carr D, et al. Groundwater in the broken hillregion, Australia: Recognising interaction with bedrock and mineralisation using S and Pb isotopes[J]. Applied Geochemistry, 2005,20(4):767-787.
doi: 10.1016/j.apgeochem.2004.11.003
[14] 于波, 裴荣富, 邱小平, 等. 福建紫金山矿田中生代岩浆岩演化序列研究[J]. 地球学报, 2013,34(4):437-446.
[14] Yu B, Pei R F, Qiu X P, et al. The evolution series of mesozoic magmatic rocks in the Zijinshan orefield, Fujian province[J]. Acta Geoscientica Sinica, 2013,34(4):437-446.
[15] 林东燕, 陈郑辉. 福建上杭拉分盆地与紫金山铜金矿床成矿关系[J]. 西安科技大学学报, 2011,31(4):438-442.
[15] Lin D Y, Cheng Z H. Relationship between Shanghang pull-apart basin in Fujian and Zijinshan copper-gold deposit mineralization[J]. Journal of Xi’an University of Science and Technology, 2011,31(4):438-442.
[16] 王少怀, 裴荣富, 曾宪辉, 等. 再论紫金山矿田成矿系列与成矿模式[J]. 地质学报, 2009,83(2):145-157.
[16] Wang S H, Pei R F, Zeng X H, et al. Metallogenic series and model of the Zijinshan mining field[J]. Acta Geoscientica Sinica, 2009,83(2):145-157.
[17] 张德全, 佘宏全, 阎升好, 等. 福建紫金山地区中生代构造环境转换的岩浆岩地球化学证据[J]. 地质论评, 2001,3(6):608-616.
[17] Zhang D Q, Sheng H Q, Yan S H, et al. Geochemistry of mesozoic magmatites in the Zijinshan regine and implication on regional tectonal inversion[J]. Geological Review, 2001,23(6):608-616.
[18] 黄仁生. 福建省紫金山铜金矿床成矿物理化学条件的研究[J]. 福建地质, 1994,26(3):159-173.
[18] Huang R S. On the metallogenic physicochemical conditions of the Zijinshan copper-gold deposit in Fujian Province[J]. Geology of Fujian, 1994,26(3):159-173.
[19] 陶建华, 许春林. 福建上杭紫金山铜金矿床控岩控矿构造分析[J]. 福建地质, 1992,26(3):186-203.
[19] Tao J H, Xu C L. Discussion on the rock and ore-controlling structures of the Zijinshan Copper-gold deposit in Shanghang country, Fujian Province[J]. Geology of Fujian, 1992,26(3):186-203.
[20] 潘天望, 袁远, 吕勇, 等. 福建紫金山矿田早白垩世以来构造演化和成岩成矿时空格架[J]. 地质力学学报, 2019,25(1):61-76.
[20] Pan T W, Yuan Y, Lyu Y, et al. The early-cretaceous tectonic evolution and the spatial-temporal framework of magmatismmine ralization in Zijinshan ore-field,Fujian province[J]. Journal of Geomechanics, 2019,25(1):61-76.
[21] 陈素余, 王少怀, 黄宏祥. 紫金山深部铜矿物特征研究[J]. 矿床地质, 2014,33(S1):667-668.
[21] Chen S Y, Wang S H, Huang H X. Study on the characteristics of deep copper deposits in Zijinshan[J]. Mineral Deposite, 2014,33(S1):667-668.
[22] Zhong J, Chen Y J, Pirajno J, et al. Geology geochronology,fluid inclusion and H-O isotope geochemistry of the Luoboling porphyry Cu-Mo deposit, Zijinshan orefield, Fujian Province, China[J]. Ore Geology Reviews, 2014,57:61-77.
doi: 10.1016/j.oregeorev.2013.09.004
[23] 赖晓丹, 祁进平, 邱小平, 等. 福建省上杭县罗卜岭斑岩型铜钼矿床含矿裂隙研究[J]. 矿床地质, 2012,31(S1):853-854.
[23] Lai X D, Qi J P, Qiu X P, et al. Study on ore-bearing fractures of Luobaling porphyry copper-molybdenum deposit in Shanghang County, Fujian Province[J]. Mineral Deposite, 2012,31(S1):853-854.
[24] 郭祥清. 福建上杭县罗卜岭斑岩型铜矿蚀变、矿化分带及找矿标志[J]. 世界有色金属, 2020,11(8):58-61.
[24] Guo X Q. The characteristics of alteration and mineralization zone and the prospecting indicator in the Luoboling porphyry Cu-Mo deposit, Shanghang, Fujian[J]. World Nonferrous Metals, 2020,11(8):58-61.
[25] 王进燚, 祁进平, 李晶, 等. 罗卜岭斑岩铜(钼)矿床围岩蚀变及矿化特征探讨[J]. 矿物学报, 2013,33(S2):833-834.
[25] Wang J Y, Qi J P, Li J, et al. Study on alteration and mineralization of surrounding rock of Luobling porphyry copper (molybdenum) deposit[J]. Acta Geoscientica Sinica, 2013,33(S2):833-834.
[26] 郭祥清, 祁进平. 福建上杭罗卜岭铜(钼)矿床地质特征及找矿标志[J]. 矿物学报, 2013,33(S2):903-904.
[26] Guo X Q, Qi J P. Geological characteristics and prospecting criteria of Luobuling copper (molybdenum) deposit in Shanghang, Fujian[J]. Acta Geoscientica Sinica, 2013,33(S2):903-904.
[27] 王学求, 刘占元, 叶荣, 等. 新疆金窝子矿区深穿透地球化学对比研究[J]. 物探与化探, 2003,27(4):247-254.
[27] Wang X Q, Liu Z Y, Ye R, et al. Deep-penetrating geochemistry: a comparative study in the Jinwozi gold ore district, Xinjiang[J]. Geophysical and Geochemical Exploration, 2003,27(4):247-254.
[28] 刘汉粮, 王学求, 张必敏, 等. 沙泉子隐伏铜镍矿地球化学勘查方法试验[J]. 物探与化探计算技术, 2014,36(6):200-206.
[28] Liu H L, Wang X Q, Zhang B M, et al. Geochemical exploration for concealed Cu-Ni deposit, Shaquanzi, Xinjiang[J]. Computational Techniques for Geophysical and Geochemical Exploration, 2014,36(6):200-206.
[29] 唐金荣, 吴传璧, 施俊法. 深穿透地球化学迁移机理与方法技术研究新进展[J]. 地质通报, 2007,12(12):1579-1590.
[29] Tang J R, Wu C B, Shi J F. Rrecent progress in the study of the deep-penetrating geochemical migration mechanisms and methods[J]. Geological Bulletin of China, 2007,12(12):1579-1590.
[30] 刘汉粮, 张必敏, 刘东盛, 等. 土壤微细粒全量测量在甘肃花牛山矿区的应用[J]. 物探与化探, 2016,40(1):33-39.
[30] Liu H L, Zhang B M, Liu D S, et al. The application of soil geochemical measurement method to the Huaniushan Pb-Zn deposit, Gansu Province[J]. Geophysical and Geochemical Exploration, 2016,40(1):33-39.
[31] 韩志轩, 张必敏, 乔宇, 等. 隐伏铜矿区土壤微细粒测量有效性实验——以江西通江岭铜矿为例[J]. 地球学报, 2020,41(6):977-986.
[31] Han Z X, Zhang B M, Qiao Y, et al. Validity experiments of fine-grained soil geochemical survey for exploring concealed copper deposits: A case study in the Tongjiangling copper deposit, Jiangxi province[J]. Acta Geoscientica Sinica, 2020,41(6):977-986.
[32] 陈振金, 陈春秀, 刘用清, 等. 福建省土壤元素背景值及其特征[J]. 中国环境监测, 1992,12(3):107-110.
[32] Chen Z J, Chen C X, Liu Y Q, et al. Background values and characteristics of soil elements in Fujian province[J]. Environmental Monitoring in China, 1992,12(3):107-110.
[33] Zhang B M, Wang X Q, Ye R, et al. Geochemical exploration for concealed depositesat the periphery of the Zijinshan copper-gold mine, south-estern China[J]. Journal of Geochemical Exploration, 2015,157:184-193.
doi: 10.1016/j.gexplo.2015.06.015
[34] 赵辰, 文美兰, 吴彦彬, 等. 碳硫分析在不同地球化学覆盖区的找矿应用研究[J]. 桂林理工大学学报, 2021,4(1):42-46.
[34] Zhao C, Wen M L, Wu Y B, et al. Prospecting application of carbon-sulfur analysis in different geochemical cover areas[J]. Journal of Guilin University of Technology, 2021,4(1):42-46.
[35] 宓奎峰, 柳振江, 李春风, 等. 内蒙古乌努格吐山大型铜钼矿床元素迁移及成矿过程探讨[J]. 中国地质, 2014,41(4):1270-1287.
[35] Mi K F, Liu Z J, Li C F, et al. Metallogenic processes and migration of ore-forming elements in the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia[J]. Geological in China, 2014,41(4):1270-1287.
[36] 宋雷鹰. 内蒙古哈如勒敖包矿区金属活动态测量的试验效果[J]. 科技情报开发与经济, 2010,20(7):174-176.
[36] Song L Y. Analysis on the test results of MOMEO of Haruleaobao mining area, Xinbaerhu right banner, Inner Mongolia[J]. Sci-Tech Information Development & Economy, 2010,20(7):174-176.
[37] 杨刚刚, 李方林, 张雄华. 金属活动态测量在东戈壁钼矿找矿效果研究[J]. 新疆地质, 2018,36(2):182-188.
[37] Yang G G, Li F L, Zhang X H. The prospecting effect research of East gobi molybdenum ore using MOMEO[J]. Xinjiang Geology, 2018,36(2):182-188.
[38] 常华进, 储雪蕾, 黄晶, 等. 沉积环境细菌作用下的硫同位素分馏[J]. 地质评论, 2007,53(6):807-813.
[38] Chang H J, Chu X L, Huang J, et al. Sulfur isotope fractionation accompanying bacterial action under sedimentary condition[J]. Geological Review, 2007,53(6):807-813.
[39] Habick K, Canfield D E, Rathemeier J. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite[J]. Geochimica et Cosmochimica Acta, 1998,62(15):2585-2595.
doi: 10.1016/S0016-7037(98)00167-7
[40] 李斌. 福建紫金山矿田中生代岩浆演化与铜金钼成矿作用地球化学研究[D]. 南京:南京大学, 2015.
[40] Li B. Geochemistry of mesozoic magmatic rocks and related Cu-Au-Mo minerralizations in the Zijinshan ore field of Fujian Province[D]. Nanjing:Nanjing University, 2015.
[41] 杜思敏. 硫同位素在示踪金属矿床成矿物质来源中的应用[J]. 化工矿产地质, 2019,41(3):296-310.
[41] Du S M. Application of sulphur isotope in tracing ore-forming material sources of metal deposites[J]. Geology of Chemical Minerals, 2019,41(3):296-310.
[1] 张哲寰, 戴慧敏, 宋运红, 杨佳佳. 黑龙江省乌裕尔河流域土壤中某些微量元素地球化学特征[J]. 物探与化探, 2022, 46(5): 1097-1104.
[2] 李秋燕, 张一鹤, 魏明辉, 贺鹏飞. 海伦市土壤主要微量元素空间分布特征[J]. 物探与化探, 2022, 46(5): 1114-1120.
[3] 赵敏, 盛勇, 戚良刚. 高精度重磁测量在覆盖区找矿中的应用——以无为县蔚山铁铜矿预查为例[J]. 物探与化探, 2019, 43(6): 1211-1216.
[4] 严明书, 吴春梅, 蒙丽, 丁相伦, 董攀, 邓海, 雷家立, 龚媛媛, 鲍丽然. 重庆市黔江猕猴桃果园土壤养分状况分析[J]. 物探与化探, 2019, 43(5): 1123-1130.
[5] 杨庆坤, 张小亮, 华琛, 于玉帅, 周万蓬. 赣中大王山石英脉型钨钼多金属矿床成岩成矿年代学及其地质意义[J]. 物探与化探, 2019, 43(3): 558-567.
[6] 刘汉粮, 张必敏, 王学求, 张振海, 刘东盛. 土壤微细粒测量地球化学模式的再现性与可对比性[J]. 物探与化探, 2018, 42(3): 506-512.
[7] 严明书, 黄剑, 何忠庠, 鲍丽然, 罗宇洁. 地质背景对土壤微量元素的影响——以渝北地区为例[J]. 物探与化探, 2018, 42(1): 199-205.
[8] 郝立波, 田密, 赵新运, 赵昕, 张瑞森, 谷雪. 基于实码加速遗传算法的投影寻踪模型在圈定水系沉积物地球化学异常中的应用——以湖南某铅锌矿床为例[J]. 物探与化探, 2016, 40(6): 1151-1156.
[9] 刘银飞, 孙彬彬, 贺灵, 曾道明, 刘占元, 周国华. 福建龙海土壤垂向剖面元素分布特征[J]. 物探与化探, 2016, 40(4): 713-721.
[10] 谢小占. 广东怀集高凤矿区地球化学特征[J]. 物探与化探, 2016, 40(2): 303-309.
[11] 杨超. 陕西双王金矿地球化学特征及其成因分析[J]. 物探与化探, 2016, 40(2): 296-302.
[12] 刘汉粮, 张必敏, 刘东盛, 王学求, 张振海, 韩志轩. 土壤微细粒全量测量在甘肃花牛山矿区的应用[J]. 物探与化探, 2016, 40(1): 33-39.
[13] 孙彬彬, 张学君, 刘占元, 周国华, 张必敏, 陈亚东. 地电化学异常形成机理初探[J]. 物探与化探, 2015, 39(6): 1183-1187.
[14] 周亚龙, 孙忠军, 杨志斌, 张富贵, 张舜尧. 多目标化探数据与油气藏指标特征的相关性研究[J]. 物探与化探, 2015, 39(3): 466-472.
[15] 张元培, 黄春娟, 孙卫国, 骆必继. 秭归地区闪长岩岩体风化壳微量元素地球化学特征[J]. 物探与化探, 2012, 36(5): 755-759.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com