Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (6): 1303-1310    DOI: 10.11720/wtyht.2025.0097
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
加密井快速优化技术在西非深水浊积砂油藏精细描述中的应用——以Bata油田为例
苑书金(), 李发有, 陆文明
中国石化石油勘探开发研究院, 北京 102206
Application of rapid infill-well optimization technology in fine-scale description of deep-water turbidite reservoirs in West Africa:A case study of the Bata oilfield
YUAN Shu-Jin(), LI Fa-You, LU Wen-Ming
Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 102206, China
全文: PDF(4922 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

与陆上油田开发不同,深水油田的开发以经济效益为中心,采用少井高产、保持地层能量平衡的策略,深水油田开发方案灵活,注重油田动态监测,边开发边调整优化,以达到高速高效开发的目标。因此加密井部署是深水油田开发中后期稳定产能的非常重要环节。本文以西非深水浊积油藏Bata为例,针对油藏储层特征及生产井水淹的现状,在油藏构造沉积研究的基础上,研究形成了以叠前AVO属性特征预测优质浊积砂体、时移地震识别水驱前缘、浊积砂岩油藏精细描述和预测油藏的剩余油分布特征为核心的加密井快速优化方案。该方案实施后生产效果提升明显,加密井日产原油达1.2万桶,已成为油田产量的主力井,加密井快速优化技术的有效性得到实证。该实例对深水油田开发中后期加密井实施、提高深水油藏采收率有很好的借鉴意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苑书金
李发有
陆文明
关键词 深水油田浊积砂岩油藏精细描述时移地震剩余油加密井    
Abstract

Differing from onshore oilfields,deep-water oilfields center their exploitation on economic efficiency, employing a strategy of achieving higher production via fewer wells while maintaining formation energy balance.Their exploitation plans are flexible and emphasize dynamic oilfield monitoring,allowing for adjustment and optimization during the exploitation,thereby achieving fast and efficient exploitation.Therefore,the placement of infill wells serves as a crucial step for stable production of deep-water oilfields in the middle and late exploitation stages.Considering oil reservoir characteristics and production well waterflooding,this study investigated the deep-water turbidite reservoirs in the Bata oilfield,West Africa.A rapid infill-well optimization plan was proposed based on a tectono-sedimentary study of the oil reservoirs.The proposed plan centers on predicting high-quality turbidite sand bodies using the prestack amplitude versus offset(AVO) attributes,identifying waterflooding fronts through time-lapse seismic surveys,performing a fine-scale description of turbidite sandstone reservoirs and predicting the distributions of residual oil in the reservoirs.The implementation of the proposed plan demonstrated satisfactory production performance.Specifically,the infill wells achieved daily crude oil production of 12,000 barrels,establishing them as a primary contributor to oilfield production.This result validates the effectiveness of rapid infill-well optimization technology.Overall,this study provides a significant reference for enhancing the oil recovery of deep-water reservoirs through the placement of infill wells for deep-water oilfields in the middle and late exploitation stages.

Key wordsdeep-water oilfield    turbidite sandstone    fine-scale description of oil reservoirs    time-lapse seismic survey    residual oil    infill well
收稿日期: 2025-04-03      修回日期: 2025-10-09      出版日期: 2025-12-20
ZTFLH:  P631.4  
基金资助:中石化科技部基金项目(P21045-2)
引用本文:   
苑书金, 李发有, 陆文明. 加密井快速优化技术在西非深水浊积砂油藏精细描述中的应用——以Bata油田为例[J]. 物探与化探, 2025, 49(6): 1303-1310.
YUAN Shu-Jin, LI Fa-You, LU Wen-Ming. Application of rapid infill-well optimization technology in fine-scale description of deep-water turbidite reservoirs in West Africa:A case study of the Bata oilfield. Geophysical and Geochemical Exploration, 2025, 49(6): 1303-1310.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.0097      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I6/1303
Fig.1  Bata油田的位置
Fig.2  Bata油藏顶构造
Fig.3  深水油田Bata加密井油藏地震描述技术流程
Fig.4  地震波传播示意
Fig.5  EF砂体组的沉积微相平面
Fig.6  连井剖面的时移地震反射特征
Fig.7  地震远道数据预测的EF砂体组的优质砂体分布
Fig.8  四维地震波阻抗差异属性预测的的EF砂体水驱前缘
Fig.9  加密井PP-503的目标层测井响应特征
Fig.10  加密井PP-503的实际产能动态
[2] Leffler W L, Pattarozzi R, Sterling G. 深水油气勘探开发概论(第二版)[M]. 姚根顺, 吕福亮, 范国章, 等,译. 北京: 石油工业出版社, 2015.
[2] Leffler W L, Pattarozzi R, Sterling G. Deepwater petroleum exploration & production:A nontechnical guide(2nd Edition)[M]. YaoG S, LyuF L, FanG Z, et al,Tans. Beijing: Petroleum Industry Press, 2015.
[3] 王震, 陈船英, 赵林. 全球深水油气资源勘探开发现状及面临的挑战[J]. 中外能源, 2010, 15(1):46-49.
[3] Wang Z, Chen C Y, Zhao L. Present situation and challenge of exploration and production for deep water oil and gas in the whole world[J]. Sino-Global Energy, 2010, 15(1):46-49.
[4] 丁帅伟, 姜汉桥, 陈民锋, 等. 国外深水油田开发模式[J]. 大庆石油地质与开发, 2013, 32(5):41-47.
[4] Ding S W, Jiang H Q, Chen M F, et al. Development models of overseas deepwater oilfields[J]. Petroleum Geology & Oilfield Development in Daqing, 2013, 32(5):41-47.
[5] 秦延龙, 王世澎, 冯士明. 国外深水油田开发模式浅析[J]. 中国造船, 2009, 50(A11):120-125.
[5] Qin Y L, Wang S P, Feng S M. The Analysis of oversea deepwater oilfield development mode[J]. Shipbuilding of China, 2009, 50(S):120-125.
[6] 朱迎辉, 陈维华, 廖意, 等. 国外深水油田高效开发关键策略与技术[J]. 中外能源, 2017, 22(6):50-54.
[6] Zhu Y H, Chen W H, Liao Y, et al. Key strategy and technology for efficient development of foreign deepwater oilfields[J]. Sino-Global Energy, 2017, 22(6):50-54.
[7] 段瑞凯, 杨宝泉, 顾文欢, 等. 深水油田高效开发策略及实践[J]. 石油科技论坛, 2019, 38(5):48-56,66.
[7] Duan R K, Yang B Q, Gu W H, et al. Schemes and practice of high-efficiency deepwater oilfield development[J]. Petroleum Science and Technology Forum, 2019, 38(5):48-56,66.
[8] 苏彦春, 李廷礼. 海上砂岩油田高含水期开发调整实践[J]. 中国海上油气, 2016, 28(3):83-90.
[8] Su Y C, Li T L. Practice of development adjustment in offshore sandstone oilfields in high water cut stage[J]. China Offshore Oil and Gas, 2016, 28(3):83-90.
[9] 商伟, 张云银, 孔省吾, 等. 基于叠前多参数敏感因子融合的浊积岩储层识别技术[J]. 物探与化探, 2022, 46(4):904-913.
[9] Shang W, Zhang Y Y, Kong X W, et al. Turbidite reservoir identification technology based on prestack multi-parameter sensitivity factor fusion[J]. Geophysical and Geochemical Exploration, 2022, 46(4):904-913.
[10] 高云峰, 王宗俊, 李绪宣, 等. 多层系油气藏时移地震匹配处理技术[J]. 物探与化探, 2019, 43(1):183-188.
[10] Gao Y F, Wang Z J, Li X X, et al. Time-lapsed seismic matching processing technology for multi-reservoir[J]. Geophysical and Geochemical Exploration, 2019, 43(1):183-188.
[11] 吕爱民, 龙隆, 姚军, 等. 海上油田加密区域优选方法新探[J]. 石油天然气学报, 2012, 34(4):126-130,135.
[11] Lyu A M, Long L, Yao J, et al. New exploration on optimization method of encryption area in offshore oilfield[J]. Journal of Oil and Gas Technology, 2012, 34(4):126-130,135.
[12] 郜益华, 姜彬, 张迎春, 等. 海上老油田多层油藏加密井产能评价方法——以渤海A油田N区块为例[J]. 油气地质与采收率, 2021, 28(4):120-130.
[12] Gao Y H, Jiang B, Zhang Y C, et al. Evaluation method for infill well productivity of multi-layer reservoirs in old offshore oilfields:A case of Block N in Bohai A Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(4):120-130.
[13] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6):1439-1447.
[13] Rui Y J, Shang X M. Exploration and practice of non-uniform time-lapse seismic key technology in Shengli Oilfield[J]. Geophysical and Geochemical Exploration, 2021, 45(6):1439-1447.
[14] 金一, 唐恩高, 张健, 等. 海上油田聚合物驱极限井网密度研究——以渤海S油田为例[J]. 复杂油气藏, 2022, 15(3):84-90.
[14] Jin Y, Tang E G, Zhang J, et al. Study on limit well pattern density of polymer flooding in offshore oilfield:A case study of Oilfield S in Bohai Bay[J]. Complex Hydrocarbon Reservoirs, 2022, 15(3):84-90.
[15] 齐宇, 彭俊, 刘鹏, 等. 地震微相分析技术——以某深水油田海底扇朵叶体为例[J]. 物探与化探, 2018, 42(1):154-160.
[15] Qi Y, Peng J, Liu P, et al. Seismic microfacies analysis technique:A case study of lobes of submarine fan in a deep water oilfield[J]. Geophysical and Geochemical Exploration, 2018, 42(1):154-160.
[16] 顾文欢. 深水油田开发中后期剩余可动储量的识别方法[J]. 重庆科技学院学报:自然科学版, 2018, 20(5):17-21,27.
[16] Gu W H. The method for the identification of remaining movable reserve in the middle and later period of development of deepwater oilfield[J]. Journal of Chongqing University of Science and Technology:Natural Sciences Edition, 2018, 20(5):17-21,27.
[17] Shuey R T. A simplication of the Zoeppritz eqations[J]. Geophysics, 1985, 50(4):609-614.
[18] Hilterman F J. Is AVO the seismic signature of lithology? A case history of Ship Shoal-South addition[J]. The Leading Edge, 1990, 9(6):15-22.
[19] 苏彦春. 海上大井距多层合采稠油油田剩余油定量描述技术及其应用[J]. 中国海上油气, 2012, 24(S1):82-85.
[19] Su Y C. A set of techniques to describe quantitatively remaining oil in offshore heavy oilfields under commingling production in large well spacing[J]. China Offshore Oil and Gas, 2012, 24(S1):82-85.
[20] 刘超, 赵春明, 廖新武, 等. 海上油田大井距条件下曲流河储层内部构型精细解剖及应用分析[J]. 中国海上油气, 2014, 26(1):58-64.
[20] Liu C, Zhao C M, Liao X W, et al. A refined anatomy of the internal structure of meandering river reservoirs under large well spacing in offshore oilfields and its application[J]. China Offshore Oil and Gas, 2014, 26(1):58-64.
[21] 陈筱, 杨希濮, 肖鹏, 等. 时移地震技术在油藏监测中的应用——以西非深水扇A油田为例[J]. 石油物探, 2023, 62(3):538-547.
[1] Weimer P, 吕福亮, 范国章, 等. 深水油气地质导论[M]. 北京: 石油工业出版社, 2012.
[1] Weimer P, Lyu F L, Fan G Z, et al. Introduction to the petroleum geology of deepwater settings[M]. Beijing: Petroleum Industry Press, 2012.
[21] Chen X, Yang X P, Xiao P, et al. Application of time-lapse seismic technology in deepwater turbidite reservoir monitoring:A case study of the Deepwater Fan A oilfield in West Africa[J]. Geophysical Prospecting for Petroleum, 2023, 62(3):538-547.
[22] 陈志海, 苑书金, 孙钰, 等. 四维地震监测深水浊积岩油藏动态[J]. 大庆石油地质与开发, 2015, 34(5):127-130.
[22] Chen Z H, Yuan S J, Sun Y, et al. Performances of deepwater turbidite oil reservoirs monitored by 4d seismic survey[J]. Petroleum Geology & Oilfield Development in Daqing, 2015, 34(5):127-130.
[1] 高君, 徐睿, 黄家宸, 苑书金. 水道浊积体特征识别模式及其储层地震预测——以西非下刚果盆地MC块为例[J]. 物探与化探, 2025, 49(4): 919-924.
[2] 苏可嘉, 秦臻, 冯敏, 艾寒冰, 王港, 关华玲, 付宇. PNN测井在剩余油评价中的应用——以老区油田高台子油层为例[J]. 物探与化探, 2024, 48(2): 393-402.
[3] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[4] 朱学娟, 单沙沙, 殷梓原, 孔雪. PNN测井清污混注水淹层剩余油饱和度计算方法[J]. 物探与化探, 2021, 45(3): 679-685.
[5] 高云峰, 王宗俊, 李绪宣, 胡光义, 范廷恩, 张晶玉, 朱振宇. 多层系油气藏时移地震匹配处理技术[J]. 物探与化探, 2019, 43(1): 183-188.
[6] 汪勇, 阳和华, 桂志先. 流体替代的地震反射振幅特征分析[J]. 物探与化探, 2012, 36(6): 991-995.
[7] 李景叶, 张连群, 陈小宏. 时移地震数据空间偏差校正方法[J]. 物探与化探, 2012, 36(4): 678-683.
[8] 张荣忠, 曹玉玲, 郭良川. 地震虚源法技术[J]. 物探与化探, 2012, 36(2): 208-213.
[9] 丘斌煌, 李添才, 周家雄, 刘金朋, 晏红艳, 肖二莲. 海上时移地震数据处理关键技术[J]. 物探与化探, 2011, 35(5): 696-700.
[10] 万吉庆. 俄罗斯过套管电阻率测井技术应用效果评价[J]. 物探与化探, 2010, 34(3): 362-366.
[11] 何福祥, 朱涛, 徐苏欣, 武翼昆, 吕玉征, 赵东. 利用垂直线源电成像技术获得剩余油分布[J]. 物探与化探, 2008, 32(4): 370-373,379.
[12] 云美厚, 丁伟, 王开燕, 杨晓燕, 朱伟强. 陆相薄互层稠油油藏热采时移地震监测互均衡处理效果分析[J]. 物探与化探, 2006, 30(5): 435-440,445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com