Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (5): 1232-1242    DOI: 10.11720/wtyht.2025.1453
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
聊城市典型农业区耕地土壤养分元素地球化学特征
张文强1,2(), 李常锁1,2, 刘金鑫1,2,3, 程诗悦1,2,3, 滕跃1,2, 李根林1,2,3()
1.山东省地矿工程勘察院(山东省地质矿产勘查开发局八〇一水文地质工程地质大队),山东 济南 250014
2.山东省地下水环境保护与修复工程技术研究中心,山东 济南 250014
3.山东省水工环地质工程有限公司,山东 济南 250014
Geochemical characteristics of soil nutrient elements in cultivated land within a typical agricultural area, Liaocheng City, China
ZHANG Wen-Qiang1,2(), LI Chang-Suo1,2, LIU Jin-Xin1,2,3, CHENG Shi-Yue1,2,3, TENG Yue1,2, LI Gen-Lin1,2,3()
1. Shandong Provincial Geo-mineral Engineering Exploration Institute (No. 801 Hydrogeology and Engineering Geology Institute, Shandong Exploration Bureau of Geology and Mineral Resources), Ji'nan 250014, China
2. Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Ji'nan 250014, China
3. Shandong Hydrogeology Engineering Geology and Environment Geology Corporation, Ji'nan 250014, China
全文: PDF(5216 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

研究土壤养分元素的丰缺状况,对于指导农业生产、改善种植结构、因地制宜科学施肥具有重要参考意义。本文以聊城市典型农业区堂邑镇为研究对象,选择代表性耕地采集84份浅层土壤样品并测试了15种养分指标,基于GIS及地统计学分析方法,揭示了各地球化学元素的空间分布规律,并开展了土壤养分地球化学单指标及综合评价。研究结果表明:①堂邑镇耕地土壤P、CaO呈较丰富—丰富水平;K2O呈中等—较丰富水平;S含量分布不均,总体达到较丰富及以上水平,局部发生过剩;N和有机质含量较缺乏;微量元素总体含量适中。②区内富硒土壤面积约2.98 km2,Se含量达(0.49~2.03)×10-6,富硒土地占比约4.76%。③区内土壤养分地球化学综合等级以较丰富(二等)和中等(三等)级别为主,面积占比分别为54.11%和40.47%,较为适宜农业生产。本次成果全面掌握了研究区耕地土壤养分状况并发现富硒土地资源,为指导土地资源开发利用、发展特色农业提供了基础地球化学依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张文强
李常锁
刘金鑫
程诗悦
滕跃
李根林
关键词 表层土壤养分元素地球化学聊城市    
Abstract

Assessing the abundance and deficiency of soil nutrient elements holds critical referential significance for guiding agricultural production, improving the planting structure, and implementing location-specific scientific fertilization. This study investigated Tangyi Town, a typical agricultural area in Liaocheng City. First, this study tested 15 nutrient indicators in 84 topsoil samples from representative cultivated land. Second, using the geographic information system (GIS) and geostatistical analysis, this study revealed the spatial distribution patterns of various geochemical elements. Third, this study conducted single-indicator and comprehensive assessments of soil nutrient geochemistry. The results show that the soils from cultivated land in Tangyi Town exhibited relatively abundant to abundant P and CaO contents, and moderate to relatively abundant K2O content. Their S content displayed overall relatively abundant to a higher level and a non-uniform distribution, with local excess observed. Additionally, they manifested relatively deficient N and organic matter contents and generally moderate trace element content. This study identified a Se-rich soil area of approximately 2.98 km2, representing about 4.76% of the total cultivated land area, with Se content ranging from 0.49×10-6 to 2.03×10-6. The comprehensive geochemical grades of soil nutrients in the study area are predominantly of grades Ⅱ (relatively abundant) and Ⅲ (moderate), covering areas of 54.11% and 40.47%, respectively, indicating favorable conditions for agricultural production. This study ascertained the soil nutrient status of cultivated land in the study area and identified Se-rich land resources, providing fundamental geochemical data for guiding the development and utilization of land resources and developing distinctive agriculture.

Key wordstopsoil    nutrient element    geochemistry    Liaocheng City
收稿日期: 2024-11-26      修回日期: 2025-05-11      出版日期: 2025-10-20
ZTFLH:  P595  
  X53  
基金资助:山东省地质勘查项目(鲁勘字(2021)46号)
通讯作者: 李根林(1987-),男,山东临清人,工程师,主要从事水文地质环境地质研究工作。Email:670250036@qq.com
作者简介: 张文强(1992-),男,山东淄博人,工程师,主要从事水文地质环境地质研究工作。Email:1024700957@qq.com
引用本文:   
张文强, 李常锁, 刘金鑫, 程诗悦, 滕跃, 李根林. 聊城市典型农业区耕地土壤养分元素地球化学特征[J]. 物探与化探, 2025, 49(5): 1232-1242.
ZHANG Wen-Qiang, LI Chang-Suo, LIU Jin-Xin, CHENG Shi-Yue, TENG Yue, LI Gen-Lin. Geochemical characteristics of soil nutrient elements in cultivated land within a typical agricultural area, Liaocheng City, China. Geophysical and Geochemical Exploration, 2025, 49(5): 1232-1242.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1453      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I5/1232
Fig.1  研究区土地类型及采样点分布
指标 分析方法 仪器型号 检出限 单位
K2O、TFe2O3 X射线荧光光谱法(XRF) ZSXPrimusⅡ 0.05(K2O、TFe2O3) 10-2
P X射线荧光光谱法(XRF) ZSXPrimusⅡ 10 10-6
N、S 容量法(VOL) 20(N)、30(S) 10-6
有机质 容量法(VOL) 0.1 10-2
CaO 电感耦合等离子体原子发射光谱法(ICP-OES) iCAP6300 0.05 10-2
Mn 电感耦合等离子体原子发射光谱法(ICP-OES) iCAP6300 10 10-6
Cu、Mo、Zn 电感耦合等离子体质谱法(ICP-MS) XSeriesII 1(Cu)、0.3(Mo)、4(Zn) 10-6
Se 原子荧光光谱法(AFS) AFS-8330 0.01 10-6
B 交流电弧—发射光谱法(ES) WP1 1 10-6
I 催化分光光度法(COL) UV1902PC 0.5 10-6
F 离子选择性电极法(ISE) PXJ-1B 100 10-6
Table 1  元素分析测试方法及检出限
养分
元素
一级
(丰富)
二级
(较丰富)
三级
(中等)
四级
(较缺乏)
五级
(缺乏)
上限
N >2000 1500~2000 1000~1500 750~1000 ≤750
P >1000 800~1000 600~800 400~600 ≤400
K2O >3.0 2.4~3.0 1.8~2.4 1.2~1.8 ≤1.2
SOM >4.0 3.0~4.0 2.0~3.0 1.0~2.0 ≤1.0
CaO >5.54 2.68~5.54 1.16~2.68 0.42~1.16 ≤0.42
TFe2O3 >5.30 4.60~5.30 4.15~4.60 3.40~4.15 ≤3.40
S >343 270~343 219~270 172~219 ≤172 ≥2000
B >65 55~65 45~55 30~45 ≤30 ≥3000
Mo >0.85 0.65~0.85 0.55~0.65 0.45~0.55 ≤0.45 ≥4
Mn >700 600~700 500~600 375~500 ≤375 ≥1500
Cu >29.0 24.0~29.0 21~24 16.0~21.0 ≤16.0 ≥50
Zn >84 71.0~84.0 62~71 50~62.0 ≤50.0 ≥200
Table 2  土壤养分指标等级划分标准
指标 缺乏 边缘 适量 过剩
Se ≤0.125 0.125~0.175 0.175~0.40 0.40~3.0 >3.0
I ≤1.0 1.0~1.5 1.5~5.0 5~100 >100
F ≤400 400~500 500~550 550~700 >700
Table 3  土壤硒、碘、氟等级划分标准
等级
f养综 ≥4.5 4.5~3.5 3.5~2.5 2.5~1.5 <1.5
Table 4  土壤养分地球化学综合评价等级划分
指标 最小值 最大值 平均值 标准差 变异系数 背景值
东昌府区[13] 聊城市[14] 山东省[14]
B 35.20 62.70 48.64 6.40 0.13 54.76 50.0 42.7
Cu 14.90 41.90 22.64 4.16 0.18 23.82 21.3 22.6
F 408.00 705.00 564.98 66.84 0.12 649 552 521
I 1.09 10.60 3.61 1.88 0.52 3.854 1.94 1.96
Mn 448.00 841.00 575.24 73.54 0.13 622 540 576
Mo 0.34 1.23 0.65 0.15 0.23 0.712 0.57 0.58
N 390 1340 890 230 0.26 1250 920 890
P 631.00 3648.00 1657.82 579.17 0.35 1606 1101 824
S 91.00 4324.00 473.39 590.53 1.25 308 234 211
Se 0.10 2.03 0.24 0.22 0.92 0.223 0.19 0.18
Zn 48.10 132.00 70.31 13.39 0.19 70.95 63.3 63.3
TFe2O3 3.20 5.66 4.01 0.44 0.11 4.683 4.1 4.31
CaO 5.08 9.68 6.60 0.85 0.13 5.187 5.24 3.36
K2O 2.22 2.81 2.42 0.12 0.05 2.299 2.29 2.47
SOM 0.55 3.21 1.35 0.48 0.36 1.93 1.31 1.362
Table 5  研究区土壤地球化学元素含量特征参数统计
Fig.2  研究区土壤大量营养元素含量分布
Fig.3  研究区土壤中量营养元素含量分布
Fig.4  研究区土壤微量营养元素含量分布
Fig.5  研究区土壤特色营养元素含量分布
Fig.6  土壤养分元素相关性矩阵
Fig.7  研究区土壤养分元素各等级样品数占比
Fig.8  研究区表层土壤养分综合评价
[1] 于林松, 万方, 范海印, 等. 姜湖贡米产地土壤重金属空间分布、源解析及生态风险评价[J]. 环境科学, 2022, 43(8):4199-4211.
[1] Yu L S, Wan F, Fan H Y, et al. Spatial distribution,source apportionment,and ecological risk assessment of soil heavy metals in Jianghugongmi producing area,Shandong Province[J]. Environmental Science, 2022, 43(8):4199-4211.
[2] 刘立芬, 栾欣婷. 寒地黑土养分元素地球化学特征及丰缺评价——以抚远市为例[J]. 土壤, 2024, 56 (3):681-688.
[2] Liu L F, Luan X T. Geochemical characteristics and assessment of nutrient elements in the cold region black soil:A case study of Fuyuan City[J]. Soils, 2024, 56 (3):681-688.
[3] 陈玉茹, 胡江龙, 胡绍祥, 等. 随州北部土地质量地球化学评价及空间分布研究[J]. 资源环境与工程, 2019, 33(S1):22-26.
doi: 10.16536/j.cnki.issn.1671-1211.2019.S1.005
[3] Chen Y R, Hu J L, Hu S X, et al. Research on geochemical assessment and space distribution in northern Suizhou[J]. Resources Environment & Engineering, 2019, 33(S1):22-26.
[4] 裴佳晨, 杨良波, 刘冬碧, 等. 江西省广昌县莲田土壤中、微量元素含量及空间变异性评价[J]. 中国蔬菜, 2022(3):50-57.
[4] Pei J C, Yang L B, Liu D B, et al. Medium and trace element contents in lotus field soils at Guangchang County of Jiangxi Province and spatial variability evaluation[J]. China Vegetables, 2022(3):50-57.
[5] 张哲寰, 刘凯, 赵君, 等. 黑龙江省逊克平原土壤质量及绿色产地适宜性评价[J]. 物探与化探, 2022, 46(5):1087-1096.
[5] Zhang Z H, Liu K, Zhao J, et al. Evaluation of the soil quality and the suitability for green food-producing areas in the Xunke Plain,Heilongjiang Province[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1087-1096.
[6] 喻超, 王英鹏, 王增辉, 等. 山东省聊城市“聊茌东” 都市区地球化学背景值研究[J]. 山东国土资源, 2021, 37(12):56-64.
[6] Yu C, Wang Y P, Wang Z H, et al. Study on geochemical background values of Liaochidong metropolital area in Liaocheng City in Shandong Province[J]. Shandong Land and Resources, 2021, 37(12):56-64.
[7] 庞绪贵, 代杰瑞, 陈磊, 等. 山东省17市土壤地球化学背景值[J]. 山东国土资源, 2019, 35(1):46-56.
[7] Pang X G, Dai J R, Chen L, et al. Soil geochemical background value of 17 cities in Shandong Province[J]. Shandong Land and Resources, 2019, 35(1):46-56.
[8] 曹建荣, 刘衍君, 于洪军, 等. 聊城市土壤重金属含量特征分析[J]. 安徽农业科学, 2010, 38(12):6436-6437,6508.
[8] Cao J R, Liu Y J, Yu H J, et al. Research on the characteristics of heavy metal contents in soil in Liaocheng City[J]. Journal of Anhui Agricultural Sciences, 2010, 38(12):6436-6437,6508.
[9] 罗庆芳, 张菊, 蒋磊, 等. 聊城市水岸带土壤重金属含量及污染评价[J]. 生态科学, 2017, 36(1):209-214.
[9] Luo Q F, Zhang J, Jiang L, et al. Heavy metal concentrations and pollution assessment of riparian soils in Liaocheng City[J]. Ecological Science, 2017, 36(1):209-214.
[10] 常彬, 郭忠华, 刘根驿, 等. 黄河下游流域土壤硒元素分布特征及影响因素研究—以山东省聊城茌平地区为例[J]. 上海国土资源, 2022(3):93-98.
[10] Chang B, Guo Z H, Liu G Y, et al. Distribution characteristics and influencing factors of soil selenium in the Lower Yellow River Basin:Take Chiping District of Liaocheng Shandong for example[J]. Shanghai Land & Resources, 2022(3):93-98.
[11] 段腾, 刘佳琦, 刘延龙, 等. 基于GIS的县级土地利用总体规划实施评价——以聊城市东昌府区为例[J]. 聊城大学学报:自然科学版, 2017, 30(3):59-63.
[11] Duan T, Liu J Q, Liu Y L, et al. The general land use planning implementation evaluation based on GIS at county level:Dongchangfu of Liaocheng as example[J]. Journal of Liaocheng University:Natural Science Edition, 2017, 30(3):59-63.
[12] 姜冰, 张海瑞, 刘阳, 等. 青州市南张楼村土地质量地球化学特征及特色土地资源评价[J]. 山东国土资源, 2022, 38(1):54-59.
[12] Jiang B, Zhang H R, Liu Y, et al. Geochemical characteristic of land quality and typical land resources evaluation in Nanzhanglou Village in Qingzhou City[J]. Shandong Land and Resources, 2022, 38(1):54-59.
[13] 黄勇, 杨忠芳. 中国土地质量评价的研究现状及展望[J]. 地质通报, 2008, 27(2):207-211.
[13] Huang Y, Yang Z F. Land quality evaluation in China:Present status and prospect[J]. Geological Bulletin of China, 2008, 27(2):207-211.
[14] 武春林, 王瑞廷, 丁坤, 等. 中国土壤质量地球化学调查与评价的研究现状和进展[J]. 西北地质, 2018, 51(3):240-252.
[14] Wu C L, Wang R T, Ding K, et al. Geochemical survey and evaluation on soil quality in China:Research status and advances[J]. Northwestern Geology, 2018, 51(3):240-252.
[15] 汪媛媛, 杨忠芳, 余涛. 土壤质量评价研究进展[J]. 安徽农业科学, 2011, 39(36):22617-22622,22657.
[15] Wang Y Y, Yang Z F, Yu T. Research progress of soil quality evaluation[J]. Journal of Anhui Agricultural Sciences, 2011, 39(36):22617-22622,22657.
[16] 姜冰, 王松涛, 孙增兵, 等. 潍坊市土壤大量营养元素有效量及其影响因素[J]. 土壤, 2023, 55 (1):218-223.
[16] Jiang B, Wang S T, Sun Z B, et al. Available contents of soil macronutrients and their influencing factors in Weifang[J]. Soils, 2023, 55 (1):218-223.
[17] 骆振华, 王彪, 陈昌阔, 等. 水城区猕猴桃产业园区土壤养分元素地球化学特征及地质环境[J]. 安徽农业科学, 2024, 52(5):159-165.
[17] Luo Z H, Wang B, Chen C K, et al. Geochemical characteristics and geological environment of soil nutrient elements in the kiwifruit industrial park of Shuicheng District[J]. Journal of Anhui Agricultural Sciences, 2024, 52(5):159-165.
[18] 李巧玲, 苏建平, 阚建鸾, 等. 江苏省如皋市土壤中量元素含量有效性评价[J]. 土壤, 2019, 51(2):263-268.
[18] Li Q L, Su J P, Kan J L, et al. Availability assessment of medium elements contents in soils of Rugao,Jiangsu[J]. Soils, 2019, 51(2):263-268.
[19] 徐杰, 张亚, 王浩宇, 等. 滇中元谋土壤养分元素分布特征及异常分析[J]. 西南农业学报, 2022, 35(5):1151-1158.
[19] Xu J, Zhang Y, Wang H Y, et al. Distribution characteristics and anomaly analysis of soil nutrient elements in Yuanmou County,Central Yunnan Province[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(5):1151-1158.
[20] 曾美玲, 张中瑞, 李小川, 等. 云浮市油茶适生区土壤中量元素分析[J]. 林业与环境科学, 2017, 33(6):98-103.
[20] Zeng M L, Zhang Z R, Li X C, et al. Soil calcium,magnesium and sulfur content of camellia oleifera suitable areas in Yunfu City[J]. Forestry and Environmental Science, 2017, 33(6):98-103.
[21] 于龙龙, 吴磊, 张志敏, 等. 富硒区土壤养分质量评价:以陕西省紫阳县闹热村为例[J]. 现代地质, 2021, 35(4):923-930.
[21] Yu L L, Wu L, Zhang Z M, et al. Evaluation of soil nutrient quality in selenium-rich area:A case study of Naore Village,Ziyang County,Shanxi Province[J]. Geoscience, 2021, 35(4):923-930.
[22] 李德胜, 杨忠芳, 靳职斌. 太原盆地土壤微量元素的地球化学特征[J]. 地质与勘探, 2004, 40(3):86-89.
[22] Li D S, Yang Z F, Jin Z B. Geochemical characters of trace elements of soil from the Taiyuan Basin[J]. Geology and Prospecting, 2004, 40(3):86-89.
[23] 郭莉, 杨忠芳, 阮起和, 等. 北京市平原区土壤中硒的含量和分布[J]. 现代地质, 2012, 26(5):859-864.
[23] Guo L, Yang Z F, Ruan Q H, et al. Content and distribution of selenium in soil of Beijing Plain[J]. Geoscience, 2012, 26(5):859-864.
[24] 龚晶晶, 高健翁, 杨剑洲, 等. 琼中黎母山—湾岭地区土壤硒、碘分布特征及其影响因素探讨[J]. 地质科技通报, 2021, 40(6):255-267.
[24] Gong J J, Gao J W, Yang J Z, et al. Distribution and influencing factors of soil selenium and iodine in Limushan-Wanling,Qiongzhong area[J]. Bulletin of Geological Science and Technology, 2021, 40(6):255-267.
[25] 马常莲, 周金龙, 曾妍妍, 等. 新疆若羌县农用地表层土壤硒氟碘地球化学特征[J]. 物探与化探, 2022, 46(6):1573-1580.
[25] Ma C L, Zhou J L, Zeng Y Y, et al. Geochemical characteristics of selenium,fluorine,iodine in surface soil of the agricultural land in Ruoqiang County,Xinjiang[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1573-1580.
[26] 陈文静, 蔡奎, 栾文楼, 等. 河北省任丘市表层土壤元素地球化学评价[J]. 地质论评, 2023, 69 (2):809-815.
[26] Chen W J, Cai K, Luan W L, et al. Geochemical evaluation of surface soil elements in Renqiu City,Hebei Province[J]. Geological Review, 2023, 69 (2):809-815.
[27] 崔邢涛, 栾文楼, 宋泽峰, 等. 石家庄城市土壤重金属空间分布特征及源解析[J]. 中国地质, 2016, 43(2):683-690.
[27] Cui X T, Luan W L, Song Z F, et al. A study of the spatial distribution and source of heavy metals in urban soil in Shijiazhuang City[J]. Geology in China, 2016, 43(2):683-690.
[28] Kunkel M L, Flores A N, Smith T J, et al. A simplified approach for estimating soil carbon and nitrogen stocks in semi-arid complex terrain[J]. Geoderma, 2011, 165(1):1-11.
[29] 吴涵, 张志远, 贾琳娜, 等. 秸秆还田量及破碎程度影响下的农田土壤碳氮淋失特征[J]. 中国海洋大学学报:自然科学版, 2025, 55(4):120-133.
[29] Wu H, Zhang Z Y, Jia L N, et al. Impact of straw return quantity and fragmentation degree on carbon and nitrogen leaching characteristics in the farmland soil[J]. Periodical of Ocean University of China, 2025, 55(4):120-133.
[30] 刘家齐, 梁燕, 肖凡, 等. 西南喀斯特区域不同植被恢复阶段土壤磷主要来源及其季节变化[J]. 应用生态学报, 2023, 34(12):3313-3321.
doi: 10.13287/j.1001-9332.202312.016
[30] Liu J Q, Liang Y, Xiao F, et al. Main sources of soil phosphorus and their seasonal changes across different vegetation restoration stages in karst region of southwest China[J]. Chinese Journal of Applied Ecology, 2023, 34(12):3313-3321.
doi: 10.13287/j.1001-9332.202312.016
[31] 刘学, 杨继松, 王志康, 等. 辽河口湿地土壤中铁和锰元素含量的分布特征[J]. 湿地科学, 2022, 20(3):435-442.
[31] Liu X, Yang J S, Wang Z K, et al. Distribution characteristics of iron and manganese contents in soils in the Liaohe River Estuary wetland[J]. Wetland Science, 2022, 20(3):435-442.
[32] 邵莉, 肖化云, 吴代赦, 等. 交通源重金属污染研究进展[J]. 地球与环境, 2012, 40(3):445-459.
[32] Shao L, Xiao H Y, Wu D S, et al. Review on research on traffic-related heavy metals pollution[J]. Earth and Environment, 2012, 40(3):445-459.
[1] 刘东盛, 陈圆圆, 迟清华. 中国陆域出露地壳76种元素岩石地球化学图的构建——方法、问题与展望[J]. 物探与化探, 2025, 49(5): 1008-1017.
[2] 张宏燕, 赵焕, 郭鹏. 河南省桐柏县老湾金矿地球化学特征及深部成矿预测[J]. 物探与化探, 2025, 49(5): 1039-1052.
[3] 朵德英, 刘秀峰, 李波. 基于构造地球化学弱信息提取技术的金属矿产探测研究[J]. 物探与化探, 2025, 49(5): 1053-1060.
[4] 王文俊. 福建省表层土壤环境质量地球化学评价及空间分布特征[J]. 物探与化探, 2025, 49(4): 933-942.
[5] 柴晨晖, 秦越强, 李朋元, 辛凯, 王建民, 殷嘉乐, 李超群, 原宁波, 郭栋, 孙宇飞. 内蒙古镶黄旗毕山地区土壤地球化学特征及找矿方向[J]. 物探与化探, 2025, 49(4): 778-789.
[6] 鲁江, 朱丽芬, 骆检兰, 刘显丽. 湘江流域土壤重金属元素地球化学背景值与基准值研究[J]. 物探与化探, 2025, 49(3): 687-696.
[7] 张浩, 牛尧, 张海旭, 沙惠兰. 青海玛沁县东部表层土壤养分地球化学评价[J]. 物探与化探, 2025, 49(3): 697-707.
[8] 施玉娇, 张江波, 种松树, 田柯南, 席国庆, 周奇明, 赵立克, 王建超, 杨芳芳. 内蒙古喀喇沁旗金蟾山金矿构造叠加晕异常特征及找矿预测[J]. 物探与化探, 2025, 49(3): 569-577.
[9] 卢文东, 孙斌, 李光杰, 魏伟, 夏小兴, 潘丙磊, 沙晴, 吕小红, 李元春, 乔娜. 因子分析在地球化学分区中的应用及指示意义——以山东省莒县—五莲地区1:5万水系沉积物测量数据为例[J]. 物探与化探, 2025, 49(2): 411-421.
[10] 王文俊. 福建省沙化土地地球化学评价及其方法研究[J]. 物探与化探, 2025, 49(2): 479-489.
[11] 杨明龙, 黄加忠, 朱志平, 徐磊, 程琰勋, 赵萌生, 张龙. 云南省姚安坝区1:5万土地质量地球化学评价及开发建议[J]. 物探与化探, 2025, 49(2): 510-519.
[12] 朱友欢, 聂飞, 邹佳作, 李宏伟, 周学铖, 冉光辉, 雷栋. 德昌地区水系沉积物稀土氧化物总量地球化学特征及找矿方向[J]. 物探与化探, 2025, 49(2): 270-280.
[13] 段星星, 刘小龙, 韩宝华, 阿地来·赛提尼亚孜, 金梦婷, 刘彤. 黄土高原地区土壤有机碳和无机碳储量及含量特征[J]. 物探与化探, 2025, 49(1): 239-247.
[14] 保其兵, 杨朋, 周舟, 雷雳, 夏庆霖, 刘银, 龚银, 卢金祥. 鄂西水月寺地区Landsat8-OLI遥感蚀变信息与地球化学奇异性异常信息融合应用[J]. 物探与化探, 2024, 48(5): 1302-1312.
[15] 刘凯, 戴慧敏, 刘国栋, 梁帅, 魏明辉, 杨泽, 宋运红. 基于土壤有机碳含量的黑土层厚度预测及影响因素分析[J]. 物探与化探, 2024, 48(5): 1368-1376.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com