Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (1): 22-31    DOI: 10.11720/wtyht.2025.2463
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
二连盆地塔北凹陷反转构造特征与砂岩型铀矿之间的关系
陈念楠1,2(), 李满根1,2(), 宋志杰1, 关宝文1, 段建兵2, 李西得3, 刘武生3, 范鹏飞1, 刘颖1
1.东华理工大学 地球科学学院,江西 南昌 330013
2.东华理工大学 核资源与环境国家重点实验室,江西 南昌 330013
3.核工业北京地质研究院,北京 100029
Relationships between inverted structures and sandstone-hosted uranium deposits in the Tabei Sag, Erlian Basin
CHEN Nian-Nan1,2(), LI Man-Gen1,2(), SONG Zhi-Jie1, GUAN Bao-Wen1, DUAN Jian-Bing2, LI Xi-De3, LIU Wu-Sheng3, FAN Peng-Fei1, LIU Ying1
1. School of Earth Sciences, East China University of Technology, Nanchang 330013, China
2. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
3. Beijing Research Institute of Uranium Geology, Beijing 100029, China
全文: PDF(9176 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

通过地震反射剖面和钻井等资料,厘定了二连盆地塔北凹陷反转构造类型和样式,进而探讨了构造反转成因机制及其与砂岩型铀矿之间的关系。结果显示:塔北凹陷东部和西部遭受了不同程度的正反转构造作用,东部发育典型的反转构造样式,西部巴彦乌拉、芒来等地区沿反转断层F1上盘的赛汉组被抬升,近乎被完全剥蚀,原有的反转构造几何形态被破坏。在早白垩世赛汉组晚期(113~98.9 Ma)及晚白垩世—古新世初(66~42 Ma),古太平洋板块俯冲方向由NW转为NWW向,二连盆地塔北凹陷应力状态由伸展转变为挤压反转,形成一系列压性、压扭性构造,赛汉组及上白垩统被抬升剥蚀,形成区域性的角度不整合。构造反转作用一方面造成塔北凹陷赛汉组沉积体系由湖相转变为河流相,另一方面导致赛汉组与上覆地层差异性升降并遭受不均衡剥蚀,形成剥蚀天窗,有利于含铀、含氧流体向深部深入和流动,控制了层间氧化带的形态和发育,促进了铀矿富集。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈念楠
李满根
宋志杰
关宝文
段建兵
李西得
刘武生
范鹏飞
刘颖
关键词 反转构造成因机制砂岩型铀矿塔北凹陷二连盆地    
Abstract

Using seismic reflection profiles and drilling data, this study determined the types and styles of inverted structures in the Tabei Sag, Erlian Basin. Accordingly, this study explored the genetic mechanisms of the inverted structures and their relationships with sandstone-hosted uranium mines. The results indicate that the eastern and western parts of the Tabei Sag experienced different degrees of normal and inverted tectonism. As a result, the eastern part exhibits typical inverted structural styles. In contrast, in the western part, the Saihan Formation on the hanging wall of inverted fault F1 in the Bayanwula and Manglai area was uplifted and almost completely eroded, with the original geometries of inverted structures being destroyed. During the late depositional stage of the Early Cretaceous Saihan Formation (113~98.9 Ma) and from the Late Cretaceous to the Early Paleocene (66~42 Ma), the subduction direction of the Paleo-Pacific Plate shifted from NW to NWW. This change altered the stress regime in the Tabei Sag from extension to compressional inversion, leading to the formation of a series of compressional and compressional-torsional structures. Consequently, the Saihan Formation and the Upper Cretaceous strata were uplifted and eroded, resulting in the formation of regional angular unconformities. The structural inversion transformed the sedimentary system of the Saihan Formation in the Tabei Sag from lacustrine to fluvial facies. Meanwhile, it caused differential uplift and uneven erosion of the Saihan Formation and its overburden, leading to the formation of erosion windows. This facilitated the infiltration and migration of uranium- and oxygen-bearing fluids toward deep parts. These processes controlled the morphologies and development of interlayer oxidation zones, thereby promoting the enrichment of uranium deposits.

Key wordsinverted structure    genetic mechanism    sandstone-hosted uranium deposit    Tabei Sag    Erlian Basin
收稿日期: 2023-10-26      修回日期: 2024-04-15      出版日期: 2025-02-20
ZTFLH:  P632  
基金资助:中国核工业地质局项目(地LCEQ01);中国铀业有限公司—东华理工大学核资源与环境国家重点实验室联合创新基金(2022NRE-LH-12);核资源与环境国家重点实验室自主基金(2020Z13);江西省教育厅科学技术研究项目(GJJ2200710)
通讯作者: 李满根(1969-),男,博士,教授,主要从事矿产资源勘查、成矿预测与评价研究工作。Email:75363159@qq.com
作者简介: 陈念楠(1997-),男,博士研究生,主要从事铀矿地质及地球信息技术研究工作。Email:cccchen_nan@163.com
引用本文:   
陈念楠, 李满根, 宋志杰, 关宝文, 段建兵, 李西得, 刘武生, 范鹏飞, 刘颖. 二连盆地塔北凹陷反转构造特征与砂岩型铀矿之间的关系[J]. 物探与化探, 2025, 49(1): 22-31.
CHEN Nian-Nan, LI Man-Gen, SONG Zhi-Jie, GUAN Bao-Wen, DUAN Jian-Bing, LI Xi-De, LIU Wu-Sheng, FAN Peng-Fei, LIU Ying. Relationships between inverted structures and sandstone-hosted uranium deposits in the Tabei Sag, Erlian Basin. Geophysical and Geochemical Exploration, 2025, 49(1): 22-31.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.2463      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I1/22
Fig.1  塔北凹陷区域位置及构造纲要(据鲁超[13]修改)
Fig.2  二连盆地综合地层柱状图(据刘波[7]修改)
Fig.3  塔北凹陷东部A-A'地震剖面反转断层(据鲁超[13],剖面位置见图1)
Fig.4  塔北凹陷东部B-B'地震剖面
(据焦贵浩[14]修改,剖面位置见图1)
Fig.5  塔北凹陷西部巴彦乌拉地区C-C'地震剖面及其对应的连井剖面
(地震反射剖面据彭云彪等[15]修改,连井柱状剖面据聂逢君等[16]修改,剖面位置见图1)
Fig.6  塔北凹陷西部芒来地区D-D'剖面及对应的连井剖面
(地震反射剖面据彭云彪等[15],连井柱状剖面据聂逢君等[16]修改,剖面位置见图1)
Fig.7  塔北凹陷巴彦乌拉矿区C-C'地震剖面构造演化剖面
(据陈念楠等[6]修改)
Fig.8  巴彦乌拉地区土壤氡气浓度剖面(a)及典型地质剖面(b)
(据吴曲波等[23]修改)
Fig.9  巴彦乌拉矿床铀成矿模型(据聂逢君等[16]修改)
[1] 聂逢君, 严兆彬, 夏菲, 等. 砂岩型铀矿的“双阶段双模式” 成矿作用[J]. 地球学报, 2021, 42(6):823-848.
[1] Nie F J, Yan Z B, Xia F, et al. Two-stage and two-mode uranium mineralization for sandstone-type uranium deposits[J]. Acta Geoscientica Sinica, 2021, 42(6):823-848.
[2] 聂逢君, 陈安平, 彭云彪, 等. 二连盆地古河道砂岩型铀矿[M]. 北京: 地质出版社, 2010.
[2] Nie F J, Chen A P, Peng Y B, et al. Paleochannel sandstone-type uranium deposits in Erlian Basin[M]. Beijing: Geological Publishing House, 2010.
[3] 赵贤正, 金凤鸣, 漆家福, 等. 二连盆地早白垩世复式断陷构造类型及其石油地质意义[J]. 天然气地球科学, 2015, 26(7):1289-1298.
doi: 10.11764/j.issn.1672-1926.2015.07.1289
[3] Zhao X Z, Jin F M, Qi J F, et al. The structural types and petroleum geological significance of early Cretaceous complex faulted sag in Erlian Basin[J]. Natural Gas Geoscience, 2015, 26(7):1289-1298.
[4] 鲁超, 焦养泉, 彭云彪, 等. 二连盆地马尼特坳陷西部幕式裂陷作用对铀成矿的影响[J]. 地质学报, 2016, 90(12):3483-3491.
[4] Lu C, Jiao Y Q, Peng Y B, et al. Effect of the episodic rifting in the western manite depression in Erlian Basin on sandstone-type uranium mineralization[J]. Acta Geologica Sinica, 2016, 90(12):3483-3491.
[5] 刘武生, 赵兴齐, 康世虎, 等. 二连盆地反转构造与砂岩型铀矿成矿作用[J]. 铀矿地质, 2018, 34(2):81-89.
[5] Liu W S, Zhao X Q, Kang S H, et al. Inversion structure and its relationship with sandstone type uranium metallization in Erlian Basin[J]. Uranium Geology, 2018, 34(2):81-89.
[6] 陈念楠, 李满根, 关宝文, 等. 二连盆地塔北凹陷西部早白垩世断—坳发育特征研究[J]. 物探与化探, 2022, 46(5):1149-1156.
[6] Chen N N, Li M G, Guan B W, et al. Early Cretaceous fault-depression development characteristics of western Tabei Sag,Erlian Basin[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1149-1156.
[7] 刘波. 二连盆地巴赛齐含铀古河谷构造建造与铀成矿模式研究[D]. 长春: 吉林大学, 2018.
[7] Liu B. Study on structural construction and uranium metallogenic model of uranium-bearing ancient valley in Basaiqi,Erlian Basin[D]. Changchun: Jilin University, 2018.
[8] 李心宁, 王同和. 二连盆地反转构造与油气[J]. 中国海上油气(地质), 1997, 11(2):106-110.
[8] Li X N, Wang T H. Inversion structure and oil and gas in Erlian Basin[J]. China Offshore Oil and Gas(Geology), 1997, 11(2):106-110.
[9] 齐天骄, 李西得, 刘旭, 等. 二连盆地芒来铀矿赋矿砂岩地球化学特征[J]. 铀矿地质, 2020, 36(5):362-372.
[9] Qi T J, Li X D, Liu X, et al. Geochemical characteristics of the hosting rocks in Manglai sandstone-type uranium deposit,Erlian Basin[J]. Uranium Geology, 2020, 36(5):362-372.
[10] 韩效忠, 胡航, 吴兆剑, 等. 马尼特坳陷准栅地区赛汉组沉积特征及其对铀成矿的控制作用[J]. 中国煤炭地质, 2017, 29(12):16-22,35.
[10] Han X Z, Hu H, Wu Z J, et al. Sedimentary features of Saihan formation and its controlling on uranium mineralization in Zhunshan area,Manit Depression[J]. Coal Geology of China, 2017, 29(12):16-22,35.
[11] 刘成东, 黄晓宇, 万建军, 等. 内蒙古巴彦乌拉铀矿床赛汉组砂岩地球化学特征及古环境意义[J]. 东华理工大学学报:自然科学版, 2023, 46(2):101-112.
[11] Liu C D, Huang X Y, Wan J J, et al. Geochemical characteristics and paleoenvironmental significance of the Saihan Formation in Bayanwula uranium deposit,Inner Mongolia[J]. Journal of East China University of Technology:Natural Science, 2023, 46(2):101-112.
[12] 赵兴齐, 秦明宽, 范洪海, 等. 内蒙古二连盆地中部古河道型铀矿床中烃类流体特征与铀成矿关系[J]. 地球学报, 2019, 40(3):405-416.
[12] Zhao X Q, Qin M K, Fan H H, et al. Relationship between uranium mineralization and hydrocarbon fluids characteristics in paleo-channel uranium deposits of central Erlian Basin,Inner Mongolia[J]. Acta Geoscientica Sinica, 2019, 40(3):405-416.
[13] 鲁超. 二连盆地巴彦乌拉铀矿田构造控矿机制和成矿模式[D]. 武汉: 中国地质大学, 2019.
[13] Lu C. Structural ore-controlling mechanism and metallogenic model of Bayanwula uranium ore field in Erlian Basin[D]. Wuhan: China University of Geosciences, 2019.
[14] 焦贵浩. 二连裂谷构造演化与油气[M]. 北京: 石油工业出版社, 2003.
[14] Jiao G H. Structural evolution of Erlian rift and oil and gas[M]. Beijing: Petroleum Industry Press, 2003.
[15] 彭云彪, 焦养泉, 鲁超, 等. 二连盆地古河谷型砂岩铀矿床[M]. 武汉: 中国地质大学出版社, 2021.
[15] Peng Y B, Jiao Y Q, Lu C, et al. Paleo-valley type sandstone-hosted uranium deposit in Erlian Basin[M]. Wuhan: China University of Geosciences Press, 2021.
[16] 聂逢君, 严兆彬, 李满根, 等. 二连裂陷盆地“同盆多类型” 铀矿[M]. 北京: 地质出版社, 2019.
[16] Nie F J, Yan Z B, Li M G, et al. “Multi-type uranium deposits in the same basin” in Erlian Rift Basin[M]. Beijing: Geological Publishing House, 2019.
[17] Yang Y T. An unrecognized major collision of the Okhotomorsk Block with east Asia during the late Cretaceous,constraints on the plate reorganization of the Northwest Pacific[J]. Earth-Science Reviews, 2013,126:96-115.
[18] 聂逢君, 张进, 严兆彬, 等. 卫境岩体磷灰石裂变径迹年代学与华北北缘晚白垩世剥露事件及铀成矿[J]. 地质学报, 2018, 92(2):313-329.
[18] Nie F J, Zhang J, Yan Z B, et al. Apatite fission track chronology of the Weijing granite and denudation event in the northern margin of north China during the late Cretaceous and their implications to uranium mineralization[J]. Acta Geologica Sinica, 2018, 92(2):313-329.
[19] 郭知鑫. 晚中生代中国东北及邻区地层、构造演化——以二连盆地和漠河盆地为例[D]. 合肥: 中国科学技术大学, 2018.
[19] Guo Z X. Stratigraphic and tectonic evolution in Northeast China and its adjacent areas in late Mesozoic:A case study of Erlian Basin and Mohe Basin[D]. Hefei: University of Science and Technology of China, 2018.
[20] Guo Z X, Shi Y P, Yang Y T, et al. Inversion of the Erlian Basin (NE China) in the early late Cretaceous:Implications for the collision of the okhotomorsk block with East Asia[J]. Journal of Asian Earth Sciences, 2018,154:49-66.
[21] Guo Z X, Yang Y T, Zhao X Z, et al. Early Cretaceous tectonostratigraphic evolution of the Erlian Basin,NE China:A record of late Mesozoic intraplate deformation in East Asia[J]. Marine and Petroleum Geology, 2019,110:539-564.
[22] 刘武生, 李必红, 史清平, 等. 二连盆地砂岩型铀矿土壤氡异常模型及应用[J]. 物探与化探, 2015, 39(2):234-239.
[22] Liu W S, Li B H, Shi Q P, et al. Model and application of radon anomaly in soil of sandstone type uranium deposits in Erlian Basin[J]. Geophysical and Geochemical Exploration, 2015, 39(2):234-239.
[23] 吴曲波, 陈聪, 杨龙泉, 等. 二连盆地中部古河道砂岩型铀矿综合地球物理响应特征研究[J]. 地质学报, 2021, 95(8):2521-2536.
[23] Wu Q B, Chen C, Yang L Q, et al. Study of integrated geophysical characteristics of paleo-valley sandstone-type uranium deposits in the middle of the Erlian Basin[J]. Acta Geologica Sinica, 2021, 95(8):2521-2536.
[1] 廖启林, 黄顺生, 许伟伟, 崔晓丹, 金洋, 刘玲, 汪媛媛, 李文博, 周强. 江苏省里下河地区富硒土壤元素地球化学特征及其成因机制[J]. 物探与化探, 2024, 48(4): 1114-1124.
[2] 胡英才, 王瑞廷, 李貅. 激电效应对AMT正演的影响及其在砂岩型铀矿中的数值模拟[J]. 物探与化探, 2024, 48(4): 1006-1017.
[3] 许第桥, 李茂. 二连盆地宽频大地电磁法数据精细反演处理研究——以满都拉图地区的数据为例[J]. 物探与化探, 2023, 47(4): 994-1001.
[4] 艾能平, 宋鹏, 李伟, 吴云鹏, 李虎. 莺歌海盆地乐东区深层异常高压成因机制及预测研究[J]. 物探与化探, 2023, 47(1): 190-198.
[5] 陈念楠, 李满根, 关宝文, 宋志杰, 段建兵, 李西得, 刘武生, 刘颖, 范鹏飞. 二连盆地塔北凹陷西部早白垩世断—坳发育特征研究[J]. 物探与化探, 2022, 46(5): 1149-1156.
[6] 喻翔, 汪硕, 胡英才, 段书新. 二连盆地北部玄武岩覆盖区电性结构与铀成矿环境研究[J]. 物探与化探, 2022, 46(5): 1157-1166.
[7] 伍显红, 许第桥, 李茂. 宽频大地电磁法在二连盆地铀矿资源评价中的试验应用[J]. 物探与化探, 2022, 46(4): 830-837.
[8] 封志兵, 聂冰锋, 聂逢君, 江丽, 夏菲, 李满根, 严兆彬, 何剑锋, 程若丹. 地球物理方法在砂岩型铀矿勘查中的应用进展[J]. 物探与化探, 2021, 45(5): 1179-1188.
[9] 黄笑, 余弘龙, 江丽, 王殿学, 周文博, 马振宇, 张亮亮, 唐国龙. 钍归一化法在松辽盆地开鲁坳陷大林地区地面伽马能谱资料处理中的应用研究[J]. 物探与化探, 2021, 45(2): 316-322.
[10] 杨玉勤, 张翔, 石连成, 邓德伟. 砂岩型铀矿航磁微弱异常提取方法[J]. 物探与化探, 2021, 45(1): 29-36.
[11] 梁建刚, 杨为民, 孙大鹏, 匡海阳. 二维地震勘探在大庆长垣南端砂岩型铀矿勘查中的应用[J]. 物探与化探, 2020, 44(6): 1322-1328.
[12] 吴曲波, 曹成寅, 李子伟. 准噶尔盆地五彩湾地区砂岩型铀矿地震勘探技术[J]. 物探与化探, 2018, 42(6): 1134-1143.
[13] 吴曲波, 李子伟, 潘自强, 曹成寅, 乔宝平. 砂岩型铀矿地震勘探技术应用现状与发展[J]. 物探与化探, 2017, 41(4): 648-655.
[14] 赵宁博, 付锦, 刘涛, 张东辉. 地形对砂岩型铀矿氡气测量的干扰作用及其修正方法[J]. 物探与化探, 2017, 41(4): 667-671.
[15] 徐善法, 刘汉彬, 王玮, 张必敏, 姚文生. 深穿透地球化学方法在十红滩砂岩型铀矿中的试验研究[J]. 物探与化探, 2017, 41(2): 189-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com