Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (1): 190-198    DOI: 10.11720/wtyht.2023.1007
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
莺歌海盆地乐东区深层异常高压成因机制及预测研究
艾能平(), 宋鹏, 李伟, 吴云鹏, 李虎
中海石油(中国)有限公司 海南分公司,海南 海口 570100
Genetic mechanisms and prediction of the deep abnormal high pressure in the Ledong area,Yinggehai Basin
AI Neng-Ping(), SONG Peng, LI Wei, WU Yun-Peng, LI Hu
Hainan Branch of CNOOC,Haikou 570100,China
全文: PDF(3738 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

乐东区深层地层压力结构复杂,实测的地层压力数据表明:不同深度、不同层位地层孔隙压力差异较大,尤其是黄流组地层孔隙压力横向跨度大,黄流组顶部地层孔隙压力有降低回头特征,到底部地层压力系数又开始快速抬升至2.3,存在明显压力突变现象。单纯利用欠压实模式开展压力预测误差大,极易引发工程事故。为了解决地层压力预测面临的问题,须明确超压成因机制。利用垂直有效应力—测井响应交会图版可有效辨别超压形成机制,乐东区深层超压成因机制主要为机械不均衡压实、化学压实作用、断裂垂向传递、生烃增压,在明确超压成因机制前提下建立合理的压力预测方法,提高预测精度,以保证钻井工程的顺利实施。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
艾能平
宋鹏
李伟
吴云鹏
李虎
关键词 异常高压成因机制莺歌海盆地乐东区    
Abstract

The deep strata in the Ledong area of the Yinggehai Basin have a complex pressure structure.As indicated by the surveyed pressure data,strata at different depths and horizons have greatly different pore pressure.Especially in the Huangliu Formation,the pore pressure shows a large transverse span.Moreover,it tends to reduce at the top but rises rapidly at the bottom,with a pressure coefficient of up to 2.3,indicating the presence of significant pressure mutation.Pressure prediction using only the undercompaction model yields large errors and thus is prone to induce engineering accidents.To effectively predict the formation pressure,it is necessary to determine the genetic mechanisms of overpressure.This study effectively identified the genetic mechanisms of the overpressure using the cross plots of vertical effective stress vs logging response.The identification results show that the genetic mechanisms of the deep overpressure in the Ledong area mainly include mechanical unbalanced compaction,chemical compaction,vertical pressure transmission along faults,and hydrocarbon-generating pressurization.A proper pressure prediction method was established based on the defined genetic mechanisms,thus improving the prediction precision and ensuring the smooth construction of drilling engineering.

Key wordsabnormal high pressure    genetic mechanism    Yinggehai Basin    Ledong area
收稿日期: 2022-03-24      修回日期: 2022-11-28      出版日期: 2023-02-20
ZTFLH:  P631.4  
基金资助:中海油“十四五”重大科技项目“复杂边缘海盆地深层/超深层油气成藏条件与成藏机制研究—莺琼盆地”(KJGG2022-0404)
作者简介: 艾能平(1982-),男,工程师,2009年毕业于中国地质大学(武汉)矿产普查与勘探专业,硕士,现在中海石油(中国)有限公司海南分公司从事综合石油地质研究工作。Email:ainp@cnooc.com.cn
引用本文:   
艾能平, 宋鹏, 李伟, 吴云鹏, 李虎. 莺歌海盆地乐东区深层异常高压成因机制及预测研究[J]. 物探与化探, 2023, 47(1): 190-198.
AI Neng-Ping, SONG Peng, LI Wei, WU Yun-Peng, LI Hu. Genetic mechanisms and prediction of the deep abnormal high pressure in the Ledong area,Yinggehai Basin. Geophysical and Geochemical Exploration, 2023, 47(1): 190-198.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1007      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I1/190
Fig.1  乐东区地层实测压力特征
Fig.2  乐东区A井完井压力
Fig.3  乐东区实测压力点垂直有效应力、测井声波、密度响应交会
a—垂直有效应力与测井声波交会;b—垂直有效应力与测井密度交会;c—测井密度与声波交会(随压力系数变化);d—测井密度与声波交会(随深度变化)
Fig.4  乐东区LD30-1-1A 井有机质热演化动力学及生烃增压数值模拟
Fig.5  LD30-1-1A井地层压力预测
Fig.6  LD-B井地层压力预测
[1] 郭令智, 钟志红, 王良书, 等. 莺歌海盆地周边区域构造演化[J]. 高校地质学报, 2001, 7(1):1-12.
[1] Guo L Z, Zhong Z H, Wang L S, et al. Regional tectonic evolution around Yinggehai basin of south China sea[J]. Geological Journal of China Universities, 2001, 7(1):1-12
[2] 张启明. 莺—琼盆地的演化与构造—热体制[J]. 天然气工业, 1999, 19(1):12-17.
[2] Zhang Q M. Evolution of Ying-qiong basin and its tectonic thermal system[J]. Natural Gas Industry, 1999, 19(1):12-17.
[3] 范彩伟. 莺歌海大型走滑盆地构造变形特征及其地质意义[J]. 石油勘探与开发, 2018, 45(2):190-199.
[3] Fan C W. Tectonic deformation features and petroleum geological significance in Yinggehai Large Strike-Slip Basin,south China sea[J]. Petroleum Exploration and Development, 2018, 45(2):190-199.
[4] 解习农, 刘晓峰. 超压盆地流体动力系统与油气运聚关系[J]. 矿物岩石地球化学通报, 2000, 19(2):103-108.
[4] Xie X N, Liu X F. Related to black shale seriesfluid dynamic system and relationship with accumulation of hydrocarbon in overpressured basin[J]. Bulletin of Mineralogy Petrology and Geochemisty, 2000, 19(2):103-108
[5] 万志峰, 夏斌, 林舸, 等. 超压盆地油气地质条件与成藏模式——以莺歌海盆地为例[J]. 海洋地质与第四纪地质, 2010, 30(6):91-97.
[5] Wan Z F, Xia B, Ling G, et al. Hydrocarbon accumulation model for overpressure basin:An example from the Yinghehai basin[J]. Marine Geology & Quaternary Geology, 2010, 30(6):91-97.
[6] 张启明, 刘福宁, 杨计海. 莺歌海盆地超压体系与油气聚集[J]. 中国海上油气:地质, 1996, 10(2):65-75.
[6] Zhang Q M, Liu F N, Yang J H. Overpressure system and hydrocarbon accumulation in the Yinggehai basin[J]. China Offshore Oil and Gas:Geology, 1996, 10(2):65-75.
[7] 刘爱群, 范彩伟, 吴云鹏, 等. 南海高温高压领域基于传递模式的它源压力预测方法研究[J]. 中国海上油气, 2021, 33(1):50-55.
[7] Liu A Q, Fan C W, Wu Y P, et al. Study on prediction method of allochthonous pressure based on transfer mode in high temperature and high pressure field of south China sea[J]. China Offshore Oil and Gas, 2021, 33(1):50-55.
[8] 胡益涛, 刘挺, 陈现军, 等. 随钻地层压力综合评价技术在莺歌海盆地超压井中的应用[J]. 长江大学学报:自然科学版, 2019, 16(10):29-33.
[8] Hu Y T, Liu T, Chen X J, et al. Application of comprehensive evaluation technology of formation pressure while drilling in ultra-high pressure wells in Yinggehai basin[J]. Journal of Yangtze University:Natural Science Edition, 2019, 16(10):29-33.
[9] 赵靖舟, 李军, 徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报, 2017, 38(9):973-998.
doi: 10.7623/syxb201709001
[9] Zhao J Z, Li J, Xu Z Y. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica, 2017, 38(9):973-998.
doi: 10.7623/syxb201709001
[10] Bowers G L. Pore pressure estimation from velocity data:Accounting for overpressure mechanisms besides under compaction[C]// IADC/SPE27488,IADC/SPE Drilling Conference, 1994:515-530
[11] Ramdhanam, Goulty N R. Overpressure-generating mechanisms in the peciko field,lower kutai basin,indonesia[J]. Petroleum Geoscience, 2010, 16(4):367-376.
doi: 10.1144/1354-079309-027
[12] Goulty N R, Sargent C, Andras P, et al. Compaction of diagenetically altered mudstones Part 1:Mechanical and chemical contributions[J]. Marine and Petroleum Geology, 2016, 77:703-713.
doi: 10.1016/j.marpetgeo.2016.07.015
[13] Tingay M R P, Morley C K, Laird A, et al. Evidence for overpressure generation by kerogen to gas maturation in the Northern malay basin[J]. AAPG Bulletin, 2013, 97(4):639-672.
doi: 10.1306/09041212032
[14] Van Ruth P, Hillis R, Tingate P. The origin of overpressure in the carnarvon basin,western australia:Implications for pore pressure prediction[J]. Petroleum Geoscience, 2004, 10(3):247-257.
doi: 10.1144/1354-079302-562
[15] Fertl W H. Abnormal formation pressure:Implication to exploration,drilling,and production of oil and gas resources[M]. Amsterdam:Elsevier, 1976:382.
[16] Magara K. Compaction and fluid migration,practical petroleum geology[M]. Amsterdam:Elsevier, 1978:319.
[17] Luo X R, Vasseur G. Contributions of compaction and aquathermal pressuring to geopressure and the influence of environmental conditions[J]. AAPG Bulletin, 1992, 76(10):1550-1559.
[18] Osborne M J, Swarbrick R E. Mechanisms for generating overpressure in sedimentary basins:A reevaluation[J]. AAPG Bulletin, 1997, 81(6):1023-1041.
[19] Audet D M. Mathematical modeling of gravitational compaction and clay dehydration in thick sediment layers[J]. Geophysical Journal International, 1995, 122:283-98.
doi: 10.1111/j.1365-246X.1995.tb03554.x
[20] 李超, 罗晓容, 范彩伟, 等. 莺歌海盆地乐东斜坡区乐东A构造储层超压形成机制及其对天然气成藏的启示[J]. 地质科学, 2021, 56(4):1034-1051.
[20] Li C, Luo X R, Fan C W, et al. Generation mechanism of overpressure and its implication for natural gas accumulation in Miocene reservoir in Ledong A structrure,Ledong slope,Yinggehai Basin[J]. Chinese Journal of Geology, 2011, 56(4):1034-1051.
[21] Lahann R W, Swarbrick R E. Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis[J]. Geofluids, 2011, 11(4):362-375.
doi: 10.1111/j.1468-8123.2011.00350.x
[22] Goulty N R, Ramdhan A M, Jones S J. Chemical compaction of mudrocks in the presence of overpressure[J]. Petroleum Geoscience, 2012, 18(4):471-479.
doi: 10.1144/petgeo2012-018
[23] 李超, 罗晓容, 张立宽. 泥岩化学压实作用的超压响应与孔隙压力预测[J]. 中国矿业大学学报, 2020, 49(5):851-968.
[23] Li C, Luo X R, Zhang L K. Overpressure responses for chemical compaction of mudstones and the pore pressure prediction[J]. Journal of China University of Mining & Technology, 2020, 49(5):851-968.
[24] 罗晓容. 数值盆地模拟方法在地质研究中的应用[J]. 石油勘探与开发, 2000, 27(2):6-10.
[24] Luo X R. The application of numerical basin modeling in geological studies[J]. Petroleum Exploration and Development, 2000, 27(2):6-10.
[25] 罗晓容. 断裂成因他源高压及其地质特征[J]. 地质学报, 2004, 78(5):641-648.
[25] Luo X R. Allogenic overpressuring associated with faulting and geological consequences[J]. Acta Geologica Sinica, 2004, 78(5):641-648.
[26] 刘晓峰, 解习农. 储层超压流体系统的成因机制述评[J]. 地质科技情报, 2003, 22(3):55-60.
[26] Liu X F, Xie X N. Review on formation mechanism of the reservoir overpressure fluid system[J]. Geological Science and Technology Information, 2003, 22(3):55-60.
[27] Luo X R, Vasseur G. Geopressuring mechanism of organic matter cracking:Numerical modeling[J]. AAPG Bulletin, 1996, 80(6):856-874.
[28] 谢玉洪. 莺歌海高温超压盆地压力预测模式及成藏新认识[J]. 天然气工业, 2011, 31(1):21-25.
[28] Xie Y H. Models of pressure prediction and new understandings of hydrocarbon accumulation in the Yinggehai Basin with high temperature and super-high pressure[J]. Natural Gas Industry, 2011, 31(12):21-25.
[29] Bowers G L. Pore pressure estimation from velocity data:Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling and Complection, 1995, 10(2):89-95.
[1] 石鸿翠, 周江羽, 王龙樟, 孙美静, 向远高. 鄂尔多斯南部上古生界泥岩突破压力测井解释及区域预测[J]. 物探与化探, 2014, 38(1): 63-70.
[2] 魏祥荣, 龙期华. 柴达木盆地第四系放射性异常及成因机制[J]. 物探与化探, 2006, 30(3): 189-193,198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com