Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1149-1156    DOI: 10.11720/wtyht.2022.1413
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
二连盆地塔北凹陷西部早白垩世断—坳发育特征研究
陈念楠1,2(), 李满根1,2(), 关宝文1,2, 宋志杰1,2, 段建兵1,2, 李西得3, 刘武生3, 刘颖1,2, 范鹏飞1,2
1.东华理工大学 地球科学学院,江西 南昌 330013
2.东华理工大学 核资源与环境国家重点实验室,江西 南昌 330013
3.核工业北京地质研究院,北京 100029
Early Cretaceous fault-depression development characteristics of western Tabei sag, Erlian Basin
CHEN Nian-Nan1,2(), LI Man-Gen1,2(), GUAN Bao-Wen1,2, SONG Zhi-Jie1,2, DUAN Jian-Bing1,2, LI Xi-De3, LIU Wu-Sheng3, LIU Ying1,2, FAN Peng-Fei1,2
1. School of Earth Sciences,East China University of Technology,Nanchang 330013,China
2. State Key Laboratory of Nuclear Resources and Environment,East China University of Technology,Nanchang 330013,China
3. Beijing Research Institute of Uranium Geology,Beijing 100029,China
全文: PDF(6239 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

本文通过选取二连盆地塔北凹陷西部地区3条典型地震剖面,运用2D Move软件分别对其进行平衡剖面恢复以及伸展量、伸展率的计算,分析了塔北凹陷早白垩世以来地质演化过程和构造演化特征。研究结果表明:(1)塔北凹陷整体受北西侧主干正断层的影响,形成西断东超形态的“单断式箕状”断陷湖盆,垂向上具有“下断上坳”的结构特征。(2)塔北凹陷各时期的伸展量、伸展率变化特征与构造演化历程相耦合,呈现出先增强后减弱,表明伸展作用 “由弱向强再减弱”的趋势。(3)塔北凹陷主要经历了四期构造运动:①阿尔善组沉积时期,塔北凹陷断裂初始发育,沉降受正断层活动控制,塔北凹陷初具雏形;②腾格尔组沉积时期,凹陷内部断裂持续发育,整体受断陷控制明显,伸展量和伸展率逐渐增大,并且在腾格尔组二段沉积时期达到顶峰;③赛汉组沉积时期凹陷整体受断裂影响微弱,沉积中心逐渐远离主干断层,总体表现为坳陷沉降和超覆不整合发育;④赛汉组沉积末期至今,断陷活动消亡,盆地逐渐收缩,地形趋于平缓,此后塔北凹陷一直处于抬升状态。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈念楠
李满根
关宝文
宋志杰
段建兵
李西得
刘武生
刘颖
范鹏飞
关键词 平衡剖面构造特征构造演化塔北凹陷二连盆地    
Abstract

This study restored the balanced cross sections of the Tabei sag and calculated the extension amounts and extension rates of the sag using three typical seismic profiles selected from the western Tabei sag,Erlian Basin using the 2D Move software.Then,it analyzed the geological and tectonic evolution characteristics of the Tabei sag since the Early Cretaceous.The results indicate that:(1)Due to the effects of the main normal fault layer on the northwest side,the whole Tabei sag has evolved into a single-faulted dustpan-shaped faulted lake basin that is faulted in the west and is overlapped in the east.Moreover,it consists of a fault in the lower part and a depression in the upper part vertically.(2)The variation characteristics of the extension amounts and extension rates in each period of the Tabei sag match the tectonic evolution process of the sag,and all of them show a strong to weak trend,indicating that the extension in the Tabei sag is in a weak-strong-weak trend.(3)The Tabei sag mainly underwent four tectonic movements:①During the sedimentary period of the Aershan Formation,the faults in the Tabei sag began to develop,the sag subsided under the control of normal fault activities, and the Tabei sag began to take shape.②During the sedimentary period of the Tenggeer formation,the faults inside the sag continued to develop,and the whole sag was significantly controlled by the fault depression.The extension amount and extension rate gradually increased and reached their peaks during the upper Tenggeer formation.③During the sedimentary period of the Saihan formation,the Tabei sag was slightly affected by faults overall,and the sedimentary center was gradually far away from the main fault. During this period, the Tabei sag was characterized by depression,subsidence,and overlap unconformity.④Since the end of the Saihan formation,the fault depression activities have disappeared,the basin has gradually contracted, and the terrain has tended to be flat.Since then,the Tabei sag has been continuously uplifting.

Key wordsbalanced cross section    tectonic characteristic    tectonic evolution    Tabei sag    Erlian Basin
收稿日期: 2021-10-11      修回日期: 2022-05-18      出版日期: 2022-10-20
ZTFLH:  P631  
基金资助:中国核工业地质局项目(地LCEQ01);中国铀业有限公司—东华理工大学核资源与环境国家重点实验室联合创新基金项目(2022NRE-LH-12);东华理工大学核资源与环境国家重点实验室开发基金项目(2020NRE14)
通讯作者: 李满根
作者简介: 陈念楠(1997-),男,广西桂林人,在读硕士研究生,矿产普查与勘探专业,主要从事铀矿地质研究工作。 Email:cccchen_nan@163.com
引用本文:   
陈念楠, 李满根, 关宝文, 宋志杰, 段建兵, 李西得, 刘武生, 刘颖, 范鹏飞. 二连盆地塔北凹陷西部早白垩世断—坳发育特征研究[J]. 物探与化探, 2022, 46(5): 1149-1156.
CHEN Nian-Nan, LI Man-Gen, GUAN Bao-Wen, SONG Zhi-Jie, DUAN Jian-Bing, LI Xi-De, LIU Wu-Sheng, LIU Ying, FAN Peng-Fei. Early Cretaceous fault-depression development characteristics of western Tabei sag, Erlian Basin. Geophysical and Geochemical Exploration, 2022, 46(5): 1149-1156.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1413      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1149
Fig.1  塔北凹陷地层综合柱状图(据参考文献[11]修改)
Fig.2  塔北凹陷地震测线分布及构造纲要(据参考文献[11]修改)
Fig.3  塔北凹陷地震反射特征 (地震反射剖面来源于核工业北京地质研究院;剖面位置如图2所示)
Fig.4  平衡剖面制作流程
Fig.5  A-A’测线构造演化剖面
Fig.6  B-B’测线构造演化剖面
Fig.7  C-C’测线构造演化剖面
编号 构造活动期 K1s2-Q K1s1 K1t2 K1t1 K1a J3 合计
长度/km 12.5 12.467 12.362 11.998 11.759 11.533
A-A’ 伸展量/km 0.033 0.105 0.364 0.239 0.226 0.967
伸展率/% 0.264 0.849 3.033 2.032 1.959 8.137
长度/km 7.5 7.469 7.304 7.018 6.847 6.774
B-B’ 伸展量/km 0.231 0.165 0.286 0.171 0.073 0.926
伸展率/% 0.415 2.259 4.075 2.497 1.077 10.323
长度/km 11.5 11.342 11.272 10.821 10.511 10.465
C-C’ 伸展量/km 0.158 0.07 0.451 0.31 0.046 1.035
伸展率/% 1.393 0.621 4.167 2.949 0.439 9.569
Table 1  塔北凹陷伸展量、伸展率计算统计数据
Fig.8  塔北凹陷各时期伸展量与伸展率变化趋势
a—伸展率;b—伸展量
[1] 赵岳, 徐强, 梁叶萍, 等. 内蒙古二连盆地呼仁布其凹陷白垩系铀矿化特征与找矿远景[J]. 中国地质, 2018, 45(1):168-177.
[1] Zhao Y, Xu Q, Liang Y P, et al. Uranium mineralization characteristics of Cretaceous period and prospecting direction of the Hurenbuqi depression in Erlian basin,Inner Mongolia[J]. Geology in China, 2018, 45(1): 168-177.
[2] 郭宏伟. 内蒙古巴彦乌拉铀矿床成矿特征及成矿规律研究[D]. 北京: 中国地质大学(北京), 2014.
[2] Guo H W. Studies on characteristics and regularity of metallogenesis of Bayanwula uranium deposits,Inner Mongolia[D]. Beijing: China University of Geosciences(Beijing), 2014.
[3] 程三友, 刘少峰, 苏三, 等. 二连盆地赛汉塔拉凹陷构造特征分析[J]. 石油地球物理勘探, 2011, 46(6):961-969.
[3] Cheng S Y, Liu S F, Su S, et al. Structural characteristics analysis of Saihantala sag in Erlian Basin[J]. Oil Geophysical Prospecting, 2011, 46(6):961-969.
[4] 王鑫, 李玲, 余雁, 等. 二连盆地乌兰花凹陷古地貌恢复及构造发育史研究[J]. 中国石油勘探, 2013, 18(6):62-68.
[4] Wang X, Li L, Yu Y, et al. Study on paleogeomorphic restoring and structural development history of Wulanhua sag,Erlian Basin[J]. China Petroleum Exploration, 2013, 18(6):62-68.
[5] 梁越. 二连盆地巴音都兰凹陷构造特征及演化研究[D]. 北京: 中国地质大学(北京), 2015.
[5] Liang Y. Tectonic characteristics and tectonic evolution of Erlian Basin Bayindulan depression[D]. Beijing: China University of Geosciences(Beijing), 2015.
[6] 徐强. 沉积型铀矿成矿的构造控制及物理模拟研究——以脑木根和呼仁布其凹陷为例[D]. 徐州: 中国矿业大学, 2018.
[6] Xu Q. Structural control of sedimentary-type uranium mineralization and analogue modelling—A case study of Naomugen and Hurenbuqi sag[D]. Xuzhou: China University of Mineing & Technology, 2018.
[7] 鲁超. 二连盆地巴彦乌拉铀矿田构造控矿机制和成矿模式[D]. 武汉: 中国地质大学, 2019.
[7] Lu C. Tectonic ore-controlling mechanism and uranium metallogenic model of Bayanwula uranium ore field in Erlian Basin[D]. Wuhan: China University of Geosciences, 2019.
[8] 肖安成, 杨树锋, 陈汉林. 二连盆地形成的地球动力学背景[J]. 石油与天然气地质, 2001, 22(2):137-140,145.
[8] Xiao A C, Yang S F, Chen H L. Geogynamic background on formation of Erlian Basin[J]. Oil & Gas Geology, 2001, 22(2):137-140,145.
[9] 漆家福, 赵贤正, 李先平, 等. 二连盆地早白垩世断陷分布及其与基底构造的关系[J]. 地学前缘, 2015, 22(3):118-128.
doi: 10.13745/j.esf.2015.03.010
[9] Qi J F, Zhao X Z, Li X P, et al. The distribution of early cretaceous faulted-sags and their relationship with basement structure within Erlian Basin[J]. Earth Science Frontiers, 2015, 22(3):118-128.
[10] 刘武生, 李必红, 史清平, 等. 二连盆地砂岩型铀矿土壤氡异常模型及应用[J]. 物探与化探, 2015, 39(2):234-239.
[10] Liu W S, Li B H, Shi Q P, et al. Model and application of radon anomaly in soil of sandstone type uranium deposits in Erlian Basin[J]. Geophysical and Geochemical Exploration, 2015, 39(2):234-239.
[11] 刘波. 二连盆地巴赛齐含铀古河谷构造建造与铀成矿模式研究[D]. 长春: 吉林大学, 2018.
[11] Liu B. Study of structure and construction in uranium-bearing paleo-valley and uranium metallogenic models in the Basaiqi Area, Erlian Basin[D]. Changchun: Jilin University, 2018.
[12] Guo Z, Shi Y, Yang Y, et al. Inversion of the Erlian Basin (NE China) in the early Late Cretaceous: Implications for the collision of the Okhotomorsk Block with East Asia[J]. Journal of Asian Earth Sciences, 2018, 154:49-66.
doi: 10.1016/j.jseaes.2017.12.007
[13] 张田, 朱伟林, 钟锴, 等. 南黄海盆地东北凹构造特征及伸缩率研究[J]. 海洋地质与第四纪地质, 2021, 41(2):118-125.
[13] Zhang T, Zhu W L, Zhong K, et al. Tectonic characteristics and extensional compressional rates of the Northeast Sag of South Yellow Sea Basin[J]. Marine Geology & Quanternar Geology, 2021, 41(2):118-125.
[1] 许第桥, 李茂. 二连盆地宽频大地电磁法数据精细反演处理研究——以满都拉图地区的数据为例[J]. 物探与化探, 2023, 47(4): 994-1001.
[2] 张保卫, 岳航羽, 谢伟, 房苏, 徐昊, 王凯. 反射地震在冀中坳陷保定凹陷精细地质结构探测中的应用[J]. 物探与化探, 2022, 46(6): 1359-1368.
[3] 喻翔, 汪硕, 胡英才, 段书新. 二连盆地北部玄武岩覆盖区电性结构与铀成矿环境研究[J]. 物探与化探, 2022, 46(5): 1157-1166.
[4] 伍显红, 许第桥, 李茂. 宽频大地电磁法在二连盆地铀矿资源评价中的试验应用[J]. 物探与化探, 2022, 46(4): 830-837.
[5] 李冰, 宋燕兵, 石磊, 王启, 蒋久明, 金久强, 周德文, 徐明, 肖刚毅, 谢民英. 鄂尔多斯盆地的磁场特征及地质意义[J]. 物探与化探, 2019, 43(4): 767-777.
[6] 田巍, 李旭兵, 王保忠. 大地电磁测深在湘东南坳陷页岩气勘探中的应用[J]. 物探与化探, 2019, 43(2): 281-289.
[7] 李冰, 宋燕兵, 王启, 王志博, 郭亮, 蒋久明, 耿圣博, 邓茂盛, 周德文. 四川盆地的磁场特征及地质意义[J]. 物探与化探, 2018, 42(5): 937-945.
[8] 宋才见, 贺华霖. 湖南麻阳盆地深部结构的地球物理研究[J]. 物探与化探, 2016, 40(6): 1089-1096.
[9] 吴曲波, 曹成寅, 潘自强, 李子伟, 乔宝平. 锤击小折射法地表调查的试验效果[J]. 物探与化探, 2016, 40(2): 380-384.
[10] 刘武生, 李必红, 史清平, 贾立城, 赵兴齐. 二连盆地砂岩型铀矿土壤氡异常模型及应用[J]. 物探与化探, 2015, 39(2): 234-239.
[11] 王斌, 李百祥, 李福城. 物探成果在探讨青海鄂拉山活动断裂带控热控震的分段差异性中的应用[J]. 物探与化探, 2015, 39(2): 311-317.
[12] 艾斯卡尔, 张建龙, 谭钦银, 吾守艾力, 梁生贤. 大地电磁测深在中上扬子地区油气调查中的作用[J]. 物探与化探, 2015, 39(1): 48-53.
[13] 张玄杰, 郑广如, 范子梁, 宋燕兵, 张婉, 温世新. 新疆西天山东段航磁推断断裂构造特征[J]. 物探与化探, 2011, 35(4): 448-454.
[14] 谢振福, 谢顺胜, 蔡水库, 吴小洁. 琼北地区重磁场特征与区域地质构造[J]. 物探与化探, 2010, 34(5): 579-582.
[15] 张永军, 张开均. 根据航磁数据探讨阿尔金断裂带的结构及构造演化[J]. 物探与化探, 2007, 31(6): 489-494.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com