Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (5): 1215-1222    DOI: 10.11720/wtyht.2024.1277
  “短偏移距瞬变电磁法技术与应用”专栏(特约专栏主编:薛国强) 本期目录 | 过刊浏览 | 高级检索 |
孔—巷瞬变电磁隧道不良地质体超前预报方法研究
李贺1,2,3(), 李貅4, 戚志鹏4, 曹华科4
1.京津冀城市群地下空间智能探测与装备重点实验室,河北 石家庄 050031
2.河北省战略性关键矿产资源重点实验室,河北 石家庄 050031
3.河北地质大学 地球科学学院,河北 石家庄 050031
4.长安大学 地质工程与测绘学院,陕西 西安 710054
Seismic prediction of unfavorable geobodies in tunnels using the borehole-roadway transient electromagnetic method
LI He1,2,3(), LI Xiu4, QI Zhi-Peng4, CAO Hua-Ke4
1. Key Laboratory of Intelligent Detection and Equipment for Underground Space of Beijing-Tianjin-Hebei Urban Agglomeration, Ministry of Natural Resources, Shijiazhuang 050031, China
2. Hebei Key Laboratory of Strategic Critical Mineral Resources, Hebei GEO University, Shijiazhuang 050031, China
3. College of Earth Sciences, Hebei GEO University, Shijiazhuang 050031, China
4. School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, China
全文: PDF(8377 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在复杂环境下进行隧道施工,需要解决对溶洞、裂隙等小规模不良地质体的精细探测。为此设计了掌子面前方存在小规模溶洞的隧道施工模型,在掌子面中心点向隧道施工方向打一个钻孔,将电性源放入孔中进行激发,在掌子面上进行阵列式数据采集,采用时域有限元方法对模型进行瞬变电磁三维正演计算。结果表明可以通过源的移动对目标体进行电磁测深,通过掌子面上电磁场分布规律确定不良地质体的平面位置。采用孔中电性源激发的方式,可以提高瞬变电磁对小规模溶洞的探测能力,为隧道环境中提高超前预报精度提供一种可行性手段。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李贺
李貅
戚志鹏
曹华科
关键词 瞬变电磁法隧道超前预报精细探测含水溶洞孔中电性源    
Abstract

Tunnel detection in complex environments requires fine-scale detection of small unfavorable geobodies like karst caves and fissures. Hence, this study designed a tunnel construction model with a small karst cave in front of the tunnel face. A borehole was drilled at the center point of the tunnel face towards the construction direction, and then an electrical source was put into the borehole for excitation. Array data acquisition was conducted on the tunnel face. The 3D forward modeling based on transient electromagnetic data was performed using the time-domain finite element method. As indicated by the results, the electromagnetic sounding of the target was achieved through the movement of the electrical source, and the planar position of the unfavorable geobody was determined based on the distribution patterns of the electromagnetic field on the tunnel face. Therefore, electrical source excitation in a borehole can enhance the detection ability of the transient electromagnetic method on small karst caves, serving as a feasible method for improving the accuracy of tunnel seismic prediction.

Key wordstransient electromagnetic method    tunnel seismic prediction    water-bearing karst cave    electrical source in a borehole    vector finite element
收稿日期: 2023-06-23      修回日期: 2024-05-07      出版日期: 2024-10-20
ZTFLH:  P631.1  
基金资助:河北省引进留学人员资助项目(C20230368);河北地质大学预研项目(KY2024QN28)
作者简介: 李贺(1991-),男,博士,讲师,主要从事瞬变电磁法三维正反演工作。Email:lihe910924@sina.com
引用本文:   
李贺, 李貅, 戚志鹏, 曹华科. 孔—巷瞬变电磁隧道不良地质体超前预报方法研究[J]. 物探与化探, 2024, 48(5): 1215-1222.
LI He, LI Xiu, QI Zhi-Peng, CAO Hua-Ke. Seismic prediction of unfavorable geobodies in tunnels using the borehole-roadway transient electromagnetic method. Geophysical and Geochemical Exploration, 2024, 48(5): 1215-1222.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1277      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I5/1215
Fig.1  非结构四面体网格
Fig.2  隧道及溶洞模型1示意
Fig.3  激发源在目标体上方的模型示意
Fig.4  (2,2,0)点的电磁场相对异常曲线
Fig.5  不同激发位置电场在掌子面上的分布
Fig.6-1  不同激发位置磁场在掌子面上的分布
Fig.6-2  不同激发位置磁场在掌子面上的分布
Fig.7  图6c中的dBx/dt、dBy/dt分布叠加
Fig.8  溶洞模型2的剖面示意
Fig.9  不同激发位置dBx/dt、dBy/dt在掌子面上的分布
Fig.10  图9c的2个剖面叠加
[1] 钱七虎, 李朝甫, 傅德明. 隧道掘进机在中国地下工程中应用现状及前景展望[J]. 地下空间, 2002(1):1-11,93.
[1] Qian Q H, Li C F, Fu D M. The present and prospect of application of tunneler in China's underground engineering[J]. Underground Space, 2002(1):1-11,93.
[2] 李术才, 刘斌, 孙怀凤, 等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报, 2014, 33(6):1090-1113.
[2] Li S C, Liu B, Sun H F, et al. State of art and trends of advanced geological prediction in tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6):1090-1113.
[3] Liu B, Fan K R, Nie L C, et al. Mapping water-abundant zones using transient electromagnetic and seismic methods when tunneling through fractured granite in the Qinling Mountains,China[J]. Geophysics, 2020, 85(4):B147-B159.
[4] 薛国强, 李貅. 瞬变电磁隧道超前预报成像技术[J]. 地球物理学报, 2008, 51(3):894-900.
[4] Xue G Q, Li X. The technology of TEM tunnel prediction imaging[J]. Chinese Journal of Geophysics, 2008, 51(3):894-900.
[5] Li S C, Zhou Z Q, Li L P, et al. Risk assessment of water inrush in Karst tunnels based on attribute synthetic evaluation system[J]. Tunnelling and Underground Space Technology, 2013,38:50-58.
[6] Li X Z, Zhang P X, He Z C, et al. Identification of geological structure which induced heavy water and mud inrush in tunnel excavation:A case study on Lingjiaotunnel[J]. Tunnelling and Underground Space Technology, 2017,69:203-208.
[7] 李貅, 武军杰, 曹大明, 等. 一种隧道水体不良地质体超前地质预报方法——瞬变电磁法[J]. 工程勘察, 2006, 34(3):70-75.
[7] Li X, Wu J J, Cao D M, et al. Advanced geologic forecasting for unfavorable geological body with water—Transient electromagnetic method[J]. Journal of Geotechnical Investigation & Surveying, 2006, 34(3):70-75.
[8] 薛国强, 潘冬明, 于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展, 2018, 33(5):2187-2192.
[8] Xue G Q, Pan D M, Yu J C. Review the applications of geophysical methods for mapping coal-mine voids[J]. Progress in Geophysics, 2018, 33(5):2187-2192.
[9] Xue G Q, Chen W, Cheng J L, et al. A review of electrical and electromagnetic methods for coal mine exploration in China[J]. IEEE Access, 2019,7:177332-177341.
[10] Hwang J H, Lu C C. A semi-analytical method for analyzing the tunnel water inflow[J]. Tunnelling and Underground Space Technology, 2007, 22(1):39-46.
[11] Home L. Hard rock TBM tunneling in challenging ground:Developments and lessons learned from the field[J]. Tunnelling and Underground Space Technology, 2016,57:27-32.
[12] Bayati M, KhademiHamidi J. A case study on TBM tunnelling in fault zones and lessons learned from ground improvement[J]. Tunnelling and Underground Space Technology, 2017,63:162-170.
[13] Dammyr Ø, Nilsen B, Gollegger J. Feasibility of tunnel boring through weakness zones in deep Norwegian subsea tunnels[J]. Tunnelling and Underground Space Technology, 2017,69:133-146.
[14] Dammyr Ø. Prediction of brittle failure for TBM tunnels in anisotropic rock:A case study from northern Norway[J]. Rock Mechanics and Rock Engineering, 2016, 49(6):2131-2153.
[15] Xue G Q, Yan Y J, Li X, et al. Transient electromagnetic S-inversion in tunnel prediction[J]. Geophysical Research Letters, 2007, 34(18):L18403.
[16] 程久龙, 陈丁, 薛国强, 等. 矿井瞬变电磁法超前探测合成孔径成像研究[J]. 地球物理学报, 2016, 59(2):731-738.
doi: 10.6038/cjg20160230
[16] Cheng J L, Chen D, Xue G Q, et al. Synthetic aperture imaging in advanced detection of roadway using the mine transient electromagnetic method[J]. Chinese Journal of Geophysics, 2016, 59(2):731-738.
[17] Cheng J L, Li F, Peng S P, et al. Joint inversion of TEM and DC in roadway advanced detection based on particle swarm optimization[J]. Journal of Applied Geophysics, 2015,123:30-35.
[18] 卢云飞, 薛国强, 邱卫忠, 等. SOTEM研究及其在煤田采空区中的应用[J]. 物探与化探, 2017, 41(2):354-359.
[18] Lu Y F, Xue G Q, Qiu W Z, et al. The research on SOTEM and its application in mined-out area of coal mine[J]. Geophysical and Geochemical Exploration, 2017, 41(2):354-359.
[19] 齐彦福, 李貅, 殷长春, 等. 时间域航空电磁各向异性大地三维自适应有限元正演研究[J]. 地球物理学报, 2020, 63(6):2434-2448.
doi: 10.6038/cjg2020N0031
[19] Qi Y F, Li X, Yin C C, et al. Three-dimensional adaptive finite-element method for time-domain airborne EM over an anisotropic earth[J]. Chinese Journal of Geophysics, 2020, 63(6):2434-2448.
[20] Li H, Qi Z P, Li X, et al. Numerical modelling analysis of multi-source semi-airborne TEM systems using a TFEM[J]. Journal of Geophysics and Engineering, 2020, 17(3):399-410.
[21] 孙怀凤, 李貅, 李术才, 等. 考虑关断时间的回线源激发TEM三维时域有限差分正演[J]. 地球物理学报, 2013, 56(3):1049-1064.
[21] Sun H F, Li X, Li S C, et al. Three-dimensional FDTD modeling of TEM excited by a loop source considering ramp time[J]. Chinese Journal of Geophysics, 2013, 56(3):1049-1064.
[22] Li W H, Li H, Lu K L, et al. Multi-scale target detection for underground spaces with transient electromagnetics based on differential pulse scanning[J]. Journal of Environmental and Engineering Geophysics, 2019, 24(4):593-607.
[23] Li H, Li X, Li W H, et al. An advanced detection method for unfavorable geological boulder based on electrical source in drill holes under shield machine[J]. Journal of Geophysics and Engineering, 2023, 20(2):426-438.
[1] 朱小伟, 丁辰, 薛凯喜, 陈骏, 韩凯敏, 罗强, 易光胜. 等值反磁通瞬变电磁法在地下浅层富水区应用——以新余市下村镇为例[J]. 物探与化探, 2024, 48(5): 1424-1436.
[2] 薛国强. 短偏移距瞬变电磁法探测技术与应用研究新进展[J]. 物探与化探, 2024, 48(5): 1165-1168.
[3] 饶丽婷, 武欣, 郭睿, 党博, 党瑞荣. 基于监督下降法的短偏移距瞬变电磁快速反演研究[J]. 物探与化探, 2024, 48(5): 1199-1207.
[4] 黄仕茂, 杨光, 王军成, 罗传根, 徐明钻, 周楠楠, 赵鹏. SOTEM在厚覆盖煤矿采空区探测中的应用实例[J]. 物探与化探, 2024, 48(5): 1208-1214.
[5] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[6] 邢涛, 王垚, 李建慧. 基于B样条插值的瞬变电磁响应一维精确计算[J]. 物探与化探, 2023, 47(5): 1316-1325.
[7] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
[8] 吴国培, 张莹莹, 赵华亮, 周钟航, 李医滨. 基于横向约束的中心回线瞬变电磁一维反演[J]. 物探与化探, 2023, 47(4): 1024-1032.
[9] 王仕兴, 何可, 尹小康, 魏栋华, 赵思为, 郭明. 半航空瞬变电磁一维聚焦反演研究[J]. 物探与化探, 2023, 47(2): 410-419.
[10] 罗术, 陈争玉, 蓝宇骋, 刘阳飞, 段明杰. 等值反磁通瞬变电磁法探测滑坡堆积体的应用[J]. 物探与化探, 2023, 47(2): 523-529.
[11] 任喜荣, 李欣, 周志杰. 等值反磁通瞬变电磁法在金矿采空区探测中的应用[J]. 物探与化探, 2023, 47(2): 540-546.
[12] 王荣军, 周超群, 崔杰, 谢明星, 秦壮杰. 强干扰环境下铁矿导水通道精细探测研究[J]. 物探与化探, 2022, 46(6): 1396-1402.
[13] 张文波, 张莹, 李建慧. 地面回线源瞬变电磁法一维反演系统及其应用[J]. 物探与化探, 2022, 46(5): 1258-1266.
[14] 吴北辰, 潘洋润奕, 程久龙, 王辉, 姚娣, 庞肖颖. 瞬变电磁法超小线圈并联式发射回线设计实验[J]. 物探与化探, 2022, 46(4): 934-939.
[15] 张莹莹. 带约束的多辐射场源半航空瞬变电磁一维自适应正则化反演方法[J]. 物探与化探, 2022, 46(2): 424-432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com