Petrogenesis and rubidium enrichment indication of the Fuling rock mass in southern Anhui Province
ZHANG Jun1(), TAO Nai1, QI Shang-Xing1, WANG Zhi-Qiang2, DA Hao-Xiang2
1. Geological Exploration Technology Institute of Anhui Province, Hefei 230031, China 2. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230002, China
The Fuling rock mass in southern Anhui Province, located in the eastern section of the Jiangnan uplift zone, is a complex granitic rock mass that has experienced multi-stage evolution. It primarily comprises two lithologies: Monzogranite and K-feldspar granite. By investigating the geological, petrographic, and petrogeochemical characteristics of the Fuling rock mass, this study delved into its evolutionary characteristics, genetic types, and tectonic environment, aiming to clarify its indication significance for rubidium enrichment. The results of this study are as follows: ① The geochemical characteristics of the Fuling rock mass demonstrate high SiO2, Na2O, K2O, and Al2O3 contents, high w(K2O)/w(Na2O) ratios, and aluminum saturation indices (A/CNK) ranging from 0.95~1.08 (average: 0.99), suggesting high-K calc-alkaline quasi-aluminous to peraluminous granites; ② In terms of trace elements, the Fuling rock mass possesses high Li, Rb, Nd, and Ta contents and significantly low Sr and Ba contents, which may be associated with the fractional crystallization of feldspar; ③ The w(Nb)/w(Ta) ratios ranging from 5.71~10.94 (average: 8.41) and Mg# values ranging from 0.02~0.31 (average: 0.13) indicate that the Fuling rock mass was primarily derived from the partial melting of lower crust rocks, suggesting A-type granites in a non-orogenic extensional environment; ④ The Rb content in the Fuling rock mass increases with the magmatic evolution degree. Compared to monzogranites, K-feldspar granites with a higher evolution degree display higher Rb content, implying that the Rb content in the Fuling rock mass is generally controlled by magmatic evolution. Overall, this study holds some reference significance for understanding the Yanshanian diagenesis and mineralization of southern Anhui Province.
张军, 陶耐, 齐尚星, 王志强, 笪昊翔. 皖南伏岭岩体岩石成因及对铷富集的指示[J]. 物探与化探, 2024, 48(3): 584-596.
ZHANG Jun, TAO Nai, QI Shang-Xing, WANG Zhi-Qiang, DA Hao-Xiang. Petrogenesis and rubidium enrichment indication of the Fuling rock mass in southern Anhui Province. Geophysical and Geochemical Exploration, 2024, 48(3): 584-596.
Cai L Y, Weng W F, Han S D. Geologic characteristic and ore-control factors of the Nanshan W-Mo polymetallic ore deposit in South Anhui Province[J]. Geological Survey and Research, 2011, 34(4):290-298.
Shi K, Zhang D Y, Ding N, et al. Geochronology,geochemistry and formation of Xiaoyao rock in southern Anhui Province[J]. Journal of Jilin University:Earth Science Edition, 2017, 47(6):1746-1762.
[3]
Song G X, Qin K Z, Li G M, et al. Mesozoic magmatism and metallogeny in the Chizhou area,middle-lower Yangtze valley,SE China:Constrained by petrochemistry,geochemistry and geochronology[J]. Journal of Asian Earth Sciences, 2014,91:137-153.
Chen X F, Fan Y, Yu J H, et al. The first discovery of rubidium deposit in Jiangnan uplift belt (Anhui section) and its significance[J]. Mineral Deposits, 2018, 37(6):1349-1354.
Zhao Y C. Petrological characteristics and metallogenic specificity discrimination of two granite bodies in southern Anhui[J]. Geology of Anhui, 1994, 4(4):31-43.
Zhou T F, Yuan F, Hou M J, et al. Genesis and geodynamic background of yanshanian granitoids in the eastern Jiangnan uplift in the adjecent area of Anhui and Jiangxi Provinces,China[J]. Journal of Mineralogy and Petrology, 2004, 24(3):65-71.
[7]
Castro A, Moreno-Ventas I, De La Rosa J D. H-type (hybrid) granitoids:A proposed revision of the granite-type classification and nomenclature[J]. Earth-Science Reviews, 1991, 31(3/4):237-253.
Weng W F, Zhi L G, Cai L Y, et al. Petrogenesis and geochemical comparison of two types of yanshanian granite in South Anhui and its surrounding area[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2011, 30(4):433-448.
Zhou J, Jiang Y H, Ge W Y. High Sr/Y Jingde pluton in the eastern Jiangnan Orogen,South China:Formation mechanism and tectonic implications[J]. Acta Geologica Sinica, 2014, 88(1):53-62.
Li P J, Yu X Q, Qiu J T, et al. Petrogenesis,oxygen fugacity characteristics and mineralization significance of two kinds of Jurassic-Cretaceous granites in southern Anhui,SE China[J]. Acta Petrologica Sinica, 2016, 32(2):399-418.
Yan J, Hou T J, Wang A G, et al. Petrogenetic contrastive studies on the Mesozoic early stage ore-bearing and late stage ore-barren granites from the southern Anhui Province[J]. Scientia Sinica:Terrae, 2017, 47(11):1269-1291.
Tang Y C, Cao J P, Zhi L G, et al. Evaluation of regional geology and mineral resources in southeast Anhui Province[M]. Beijing: Geological Publishing House, 2010.
Yu J H, Wei Z Y, Wang L J, et al. Cathaysia block:A young continent composed of ancient materials[J]. Geological Journal of China Universities, 2006, 12(4):440-447.
Hou M J. The magmatic activities and its deepth process of the later yanshannian granitoids in the Jiangnan uplift in the area of Anhui Province[D]. Hefei: Hefei University of Technology, 2005.
Zheng Y, Yu X Q, Wang D E, et al. Exhumation history of the Fuling granite,southern Anhui:New insights from apatite fission track analysis[J]. Geological Review, 2009, 55(3):385-394.
Chen F, Wang D H, Du J G, et al. New dating of the Fuling granite body with LA-ICP-MS zircon U-Pb in Jixi,Anhui Province and their geological significance[J]. Rock and Mineral Analysis, 2013, 32(6):970-977.
Bai Y L, Wang Z Q, Wang T, et al. LA-ICP-MS zircon U-Pb age,geochemistry and petrogenesis of the Yaoli pluton in northeastern Jiangxi Province[J]. Acta Petrologica et Mineralogica, 2015, 34(1):35-50.
Xing F M, Xu X. Nd,Sr,Pb isotopic geochemistry of the Mesozoic granitoids in south Anhui[J]. Geology of Anhui, 1993, 3(1):35-41.
[21]
Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area,Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1):63-81.
[22]
Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 1994, 37(3/4):215-224.
[23]
Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643.
[24]
Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2):189-200.
[25]
Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar:Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4):891-931.
[26]
Frey F A, Green D H, Roy S D. Integrated models of basalt petrogenesis:A study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 1978, 19(3):463-513.
[27]
Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3-4):347-359.
[28]
Rudnick R L, Fountain D M. Nature and composition of the continental crust:A lower crustal perspective[J]. Reviews of Geophysics, 1995, 33(3):267-309.
[29]
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society of London Special Publications, 1989, 42(1):313-345.
[30]
Yuan F, Zhou T F, Yue S C, et al. Rare earths of magmatic rocks in yanshanian stage in adjacent region of Anhui and Jiangxi Provinces,Jiangnan uplift[J]. Journal of Rare Earths, 2003, 21(5):591-594,500.
Chen J F, Zhou T X, Li X M, et al. Sr and nd isotopic constraints on source regions of the intermediate and acid intrusions from southern Anhui Province[J]. Geochimica, 1993, 22(3):261-268.
Xing F M, Chen J F, Xu X, et al. Nd isotopic characteristics of low grade metamorphicand sedimentary rocks from southern Anhui provinceand their significance in tectonics[J]. Geoscience, 1991, 5(3):290-299.
Huang D T. Evolving characteristics and related rare-metal metallogenesis of Lingshan rock body[J]. Geology and Prospecting, 2003, 39(4):35-40.
[34]
Dostal J, Chatterjee A K. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia,Canada)[J]. Chemical Geology, 2000, 163(1-4):207-218.
[35]
Weyer S, Münker C, Mezger K. Nb/Ta,Zr/Hf and REE in the depleted mantle:Implications for the differentiation history of the crust-mantle system[J]. Earth and Planetary Science Letters, 2003, 205(3-4):309-324.
Zhang S, Zhang Z C, Ai Y, et al. The petrology,mineralogy and geochemistry study of the Huangshan granite intrusion in Anhui Province[J]. Acta Petrologica Sinica, 2009, 25(1):25-38.
Zhu G, Liu G S. Basic characteristics and Mesozoic orogenicprocess of the Jiangnan intracontinentalorogenic belt in southern Anhui[J]. Geotectonica et Metallogenia, 2000, 24(2):103-111.
[38]
Zhou J, Jiang Y H, Xing G F, et al. Geochronology and petrogenesis of Cretaceous A-type granites from the NE Jiangnan Orogen,SE China[J]. International Geology Review, 2013, 55(11):1359-1383.
[39]
Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1-4):43-55.
[40]
Irber W. The lanthanide tetrad effect and its correlation with K/Rb,Eu/Eu,Sr/Eu,Y/Ho,and Zr/Hf of evolving peraluminous granite suites[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4):489-508.
Mu S T, Shao Y J, Song Z Y, et al. Geochemical characteristics and indication of mica in Renli-Chuanziyuan pegmatite type rare metal deposit in Hunan Province[J]. Journal of Central South University:Science and Technology, 2021, 52(9):2973-2989.
[42]
Taylor S R. The application of trace element data to problems in petrology[J]. Physics and Chemistry of the Earth, 1965,6:133-213.
[43]
Shaw D M. A review of K-Rb fractionation trends by covariance analysis[J]. Geochimica et Cosmochimica Acta, 1968, 32(6):573-601.
Lin D S. Application of the ratio of potassium to rubidium in studying the genesis of some rocks and deposits[J]. Geology and Prospecting, 1978, 14(6):45-48.
[45]
刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社,1984.
[45]
Liu Y J, Cao L M, Li Z L, et al. Elemental geochemistry[M]. Beijing: Science Press,1984.
[46]
Shearer C K, Papike J J, Laul J C. Chemistry of potassium feldspars from three zoned pegmatites,Black Hills,South Dakota:Implications concerning pegmatite evolution[J]. Geochimica et Cosmochimica, 1985, 49(3):663-673.
Lu J. Geochemical evolution characteristics of trace elements and ree in Gejiu granites[J]. Geochimica, 1987, 16(3):249-259.
[48]
Ballouard C, Poujol M, Boulvais P, et al. Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition[J]. Geology, 2016, 44(3):231-234.
Wang Z Q, Hu H, Chen B, et al. The petrogenesis of the Early Cretaceous Sanguliu pluton in the Liaodong Peninsula,NE China:Constrained from the trace-element modelling and Sr-Nd isotopes[J]. Acta Petrologica Sinica, 2020, 36(12):3683-3704.
[50]
Rollinson H R. Using geochemical data:Evaluation,presentation,interpretation[M]. England: Longman Scientific,1993.
Zhang Q. Could granitic magmas experience fractionation and evolution?[J]. Acta Petrologica et Mineralogica, 2012, 31(2):252-260.
[52]
Fiedrich A M, Bachmann O, Ulmer P, et al. Mineralogical,geochemical,and textural indicators of crystal accumulation in the Adamello Batholith (Northern Italy)[J]. American Mineralogist, 2017, 102(12):2467-2483.
[53]
Putirka K D, Canchola J, Rash J, et al. Pluton assembly and the genesis of granitic magmas:Insights from the GIC pluton in cross section,Sierra Nevada Batholith,California[J]. American Mineralogist, 2014, 99(7):1284-1303.