Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (3): 584-596    DOI: 10.11720/wtyht.2024.1268
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
皖南伏岭岩体岩石成因及对铷富集的指示
张军1(), 陶耐1, 齐尚星1, 王志强2, 笪昊翔2
1.安徽省勘查技术院,安徽 合肥 230031
2.合肥工业大学 资源与环境工程学院,安徽 合肥 230002
Petrogenesis and rubidium enrichment indication of the Fuling rock mass in southern Anhui Province
ZHANG Jun1(), TAO Nai1, QI Shang-Xing1, WANG Zhi-Qiang2, DA Hao-Xiang2
1. Geological Exploration Technology Institute of Anhui Province, Hefei 230031, China
2. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230002, China
全文: PDF(7620 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

皖南伏岭岩体位于江南隆起带东段,为一复式花岗岩体经多阶段演化形成,主体主要分为两种岩性:二长花岗岩和钾长花岗岩。本文对皖南伏岭岩体进行了地质、岩相学、岩石地球化学特征研究,探讨了伏岭花岗岩体演化特征、成因类型、构造环境,试图阐明岩体对铷富集的指示意义。结果显示,伏岭岩体地球化学特征表现出较高的SiO2、Na2O、K2O、Al2O3含量和w(K2O)/w(Na2O)比值,铝饱和指数(A/CNK)为0.95~1.08,平均值为0.99,属于高钾钙碱性准铝质—过铝质花岗岩;Li、Rb、Nd、Ta等微量元素含量较高,Sr、Ba含量明显偏低,这可能与长石的分离结晶作用有关;微量元素w(Nb)/w(Ta)比值范围5.71~10.94,平均值8.41,Mg#范围0.02~0.31,平均值0.13,指示伏岭岩体可能主要来源于下地壳岩石的部分融熔,属于非造山伸展环境中的A型花岗岩;岩体中Rb含量随着岩浆演化程度的增加而升高,相对于二长花岗岩,演化程度高的钾长花岗岩具有更高的Rb含量,表明伏岭岩体Rb含量变化整体受控于岩浆演化过程。本次开展伏岭岩体的研究工作,对理解皖南燕山期成岩成矿作用具有一定的借鉴意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张军
陶耐
齐尚星
王志强
笪昊翔
关键词 花岗岩岩石成因地球化学伏岭岩体    
Abstract

The Fuling rock mass in southern Anhui Province, located in the eastern section of the Jiangnan uplift zone, is a complex granitic rock mass that has experienced multi-stage evolution. It primarily comprises two lithologies: Monzogranite and K-feldspar granite. By investigating the geological, petrographic, and petrogeochemical characteristics of the Fuling rock mass, this study delved into its evolutionary characteristics, genetic types, and tectonic environment, aiming to clarify its indication significance for rubidium enrichment. The results of this study are as follows: ① The geochemical characteristics of the Fuling rock mass demonstrate high SiO2, Na2O, K2O, and Al2O3 contents, high w(K2O)/w(Na2O) ratios, and aluminum saturation indices (A/CNK) ranging from 0.95~1.08 (average: 0.99), suggesting high-K calc-alkaline quasi-aluminous to peraluminous granites; ② In terms of trace elements, the Fuling rock mass possesses high Li, Rb, Nd, and Ta contents and significantly low Sr and Ba contents, which may be associated with the fractional crystallization of feldspar; ③ The w(Nb)/w(Ta) ratios ranging from 5.71~10.94 (average: 8.41) and Mg# values ranging from 0.02~0.31 (average: 0.13) indicate that the Fuling rock mass was primarily derived from the partial melting of lower crust rocks, suggesting A-type granites in a non-orogenic extensional environment; ④ The Rb content in the Fuling rock mass increases with the magmatic evolution degree. Compared to monzogranites, K-feldspar granites with a higher evolution degree display higher Rb content, implying that the Rb content in the Fuling rock mass is generally controlled by magmatic evolution. Overall, this study holds some reference significance for understanding the Yanshanian diagenesis and mineralization of southern Anhui Province.

Key wordsgranite    petrolgenesis    geochemistry    rubidium    Fuling rock mass
收稿日期: 2023-06-19      修回日期: 2023-10-09      出版日期: 2024-06-20
ZTFLH:  P632  
基金资助:安徽省自然资源科技项目(2020-K-12)
作者简介: 张军(1991-),男,硕士,工程师,2019年毕业于中国地质大学(北京),主要从事地球化学及矿产勘查研究工作。Email:zhangjunmy302@163.com
引用本文:   
张军, 陶耐, 齐尚星, 王志强, 笪昊翔. 皖南伏岭岩体岩石成因及对铷富集的指示[J]. 物探与化探, 2024, 48(3): 584-596.
ZHANG Jun, TAO Nai, QI Shang-Xing, WANG Zhi-Qiang, DA Hao-Xiang. Petrogenesis and rubidium enrichment indication of the Fuling rock mass in southern Anhui Province. Geophysical and Geochemical Exploration, 2024, 48(3): 584-596.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1268      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I3/584
Fig.1  伏岭岩体大地构造位置[16](a)及地质简图[8](b)
Fig.2  伏岭岩体手标本及显微镜下照片
a~d—二长花岗岩;e~h—钾长花岗岩。Qtz—石英;Kfs—钾长石;Pl—斜长石;Bt—黑云母
样号 FL67 FL112 FL66 FL19 FL47 FL111 FL61 FL115 FL70 FL71 FL72 FL77 FL12 FL14 FL54 FL56 FL74
花岗岩
岩性
二长 二长 二长 二长 二长 二长 二长 二长 钾长 钾长 钾长 钾长 钾长 钾长 钾长 钾长 钾长
主量元素/%
SiO2 73.32 73.31 71.06 73.66 73.99 72.36 72.43 72.99 74.80 74.83 75.51 74.61 76.74 75.81 74.05 74.54 74.39
Al2O3 12.43 12.55 12.64 13.55 12.48 12.75 11.95 12.71 11.64 11.65 12.13 12.44 12.38 12.57 12.47 12.69 11.68
TFe2O3 1.79 1.55 2.05 2.04 1.36 1.72 1.64 1.76 1.11 1.10 1.05 0.97 0.81 0.86 0.88 0.96 1.14
TFeO 1.61 1.40 1.84 1.84 1.22 1.55 1.48 1.58 1.00 0.99 0.94 0.87 0.73 0.77 0.79 0.86 1.03
K2O 5.10 5.27 5.06 5.48 5.19 5.19 5.00 5.62 4.59 4.60 4.29 4.89 4.45 4.39 4.62 4.61 4.64
Na2O 3.40 3.32 3.10 3.18 3.69 3.36 3.22 3.29 3.59 3.61 3.99 3.85 3.99 4.12 4.09 3.93 3.63
CaO 1.07 0.68 1.33 0.78 0.73 0.89 1.02 0.70 0.64 0.64 0.55 0.66 0.35 0.24 0.52 0.28 0.61
MgO 0.23 0.22 0.47 0.20 0.05 0.29 0.20 0.23 0.05 0.05 0.02 0.04 0.03 0.02 0.02 0.01 0.05
P2O5 0.05 0.04 0.08 0.05 0.02 0.05 0.05 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
TiO2 0.18 0.13 0.27 0.21 0.08 0.18 0.17 0.19 0.05 0.05 0.02 0.04 0.02 0.01 0.01 0.01 0.06
MnO 0.04 0.03 0.04 0.04 0.03 0.04 0.03 0.04 0.06 0.05 0.06 0.05 0.05 0.06 0.07 0.06 0.07
烧失量 1.55 2.13 1.71 2.28 1.20 2.29 2.20 2.24 2.75 2.16 1.17 2.92 1.33 2.88 2.95 1.24 1.53
总量 100.77 100.62 97.81 101.47 100.04 99.12 99.38 99.82 99.30 98.76 98.81 100.49 100.17 100.98 99.70 98.35 97.81
Mg# 0.20 0.22 0.31 0.16 0.07 0.25 0.19 0.21 0.08 0.08 0.04 0.08 0.07 0.04 0.04 0.02 0.08
A/NK 1.12 1.12 1.20 1.21 1.07 1.14 1.12 1.11 1.07 1.07 1.08 1.07 1.09 1.09 1.06 1.11 1.06
A/CNK 0.95 1.01 0.97 1.08 0.96 1.00 0.95 1.00 0.97 0.96 0.99 0.97 1.03 1.05 0.98 1.06 0.97
R1 2434 2429 2391 2439 2368 2365 2466 2330 2605 2597 2582 2434 2633 2538 2377 2467 2551
R2 370 330 414 359 325 360 353 336 299 299 298 317 282 273 301 279 297
样号 FL67 FL112 FL66 FL19 FL47 FL111 FL61 FL115 FL70 FL71 FL72 FL77 FL12 FL14 FL54 FL56 FL74
花岗岩
岩性
二长 二长 二长 二长 二长 二长 二长 二长 钾长 钾长 钾长 钾长 钾长 钾长 钾长 钾长 钾长
微量元素/10-6
Li 57.70 27.00 47.20 33.10 33.00 50.90 46.30 49.70 109.00 19.90 31.80 79.40 93.20 91.00 202.00 149.00 20.50
Be 2.80 4.22 2.87 1.73 1.63 3.14 3.54 3.27 4.80 5.01 6.54 3.06 2.68 1.59 1.56 0.94 11.40
Co 1.93 1.89 3.18 5.54 7.21 1.84 1.98 1.81 0.63 0.46 0.59 0.55 6.00 6.16 1.90 2.35 0.76
Ni 10.40 22.50 15.70 12.10 7.98 14.90 15.50 18.90 5.73 7.81 12.20 10.90 15.50 22.70 8.23 7.24 13.00
Rb 220.00 255.00 243.00 209.00 268.00 230.00 208.00 228.00 386.00 348.00 421.00 340.00 416.00 571.00 708.00 605.00 427.00
Sr 75.30 49.80 124.30 103.30 30.40 73.30 80.90 58.20 14.40 14.20 9.60 17.40 10.10 6.20 4.60 5.10 11.30
Zr 158.90 138.10 192.30 228.90 153.20 143.40 151.20 147.70 101.10 101.40 119.30 90.10 80.10 113.20 50.70 113.30 95.30
Nb 14.90 12.20 14.80 16.30 14.20 12.10 11.60 12.70 23.80 22.20 44.80 25.70 39.60 56.00 53.50 49.40 48.70
Sn 4.68 5.15 6.49 3.17 3.56 4.95 3.93 3.32 8.78 5.95 12.00 5.37 3.98 3.17 2.36 1.63 4.67
Ba 338.50 276.20 539.10 374.10 189.50 361.00 353.10 204.70 52.40 56.70 50.10 65.60 53.90 52.70 42.90 46.00 56.60
Ta 2.30 1.94 1.55 1.49 1.46 1.37 1.32 1.17 3.12 2.59 4.86 2.84 6.93 8.28 5.21 7.46 6.30
W 0.60 5.20 0.59 1.31 0.41 0.95 0.81 1.22 1.95 2.71 4.61 2.62 0.69 0.39 10.20 0.36 7.96
Th 21.80 28.30 26.60 7.36 8.52 19.10 18.90 21.10 32.40 37.80 41.20 19.90 13.40 8.17 4.91 4.66 40.20
Table 1  伏岭岩体岩石主量元素、微量元素分析结果及相关参数特征
Fig.3  伏岭岩体花岗岩w(SiO2)-w(K2O)图解(a)与TAS分类图解(b)
b中:1—橄榄辉长岩;2a—碱性辉长岩;2b—亚碱性辉长岩;3—辉长闪长岩;4—闪长岩;5—花岗闪长岩;6—花岗岩;7—硅英岩;8—二长辉长岩;9—二长闪长岩;10—二长岩;11—石英二长岩;12—正长岩;13—副长正长岩;14—副长石二长正长岩;15—副长石二长闪长岩;16—副长辉长岩;17—副长深成岩;18—霓方钠岩/磷霞岩/粗白榴岩。图a底图据文献[21];图b底图据文献[22]。
Fig.4  伏岭岩体A/CNK-A/NK(a)与w(K2O)-w(Na2O)(b)图解
图a底图据文献[23];图b底图据文献[24]。图例同图3
Fig.5  伏岭岩体主量元素哈克图解
Fig.6  伏岭岩体微量元素哈克图解
Fig.7  伏岭岩体构造环境判别图解
RRG—与裂谷有关的花岗岩类;CEUG—与大陆的造陆抬升有关的花岗岩类; POG—后造山花岗岩类;IAG—岛弧花岗岩类;CAG—大陆弧花岗岩类;CCG—大陆碰撞花岗岩类。图a底图据文献[39];图b、c底图据文献[23]。
Fig.8  伏岭岩体各阶段w(Rb)-w(K)/w(Rb)及w(Rb)-w(Rb)/w(Sr)协变图解
Fig.9  伏岭花岗岩基于瑞利分离结晶的微量元素模拟
由于Rb、Sr、Ba主要受控于主要矿物,此处分离相不考虑副矿物的影响,FC1分离矿物相组合:35%石英+40%斜长石+15%钾长石+5%黑云母;分离结晶演化趋势线以10%为间隔。各矿物的Rb、Sr、Ba 分配系数引自文献[50]。
[1] 蔡连友, 翁望飞, 韩顺道. 皖南南山钨钼多金属矿地质特征及控矿因素[J]. 地质调查与研究, 2011, 34(4):290-298.
[1] Cai L Y, Weng W F, Han S D. Geologic characteristic and ore-control factors of the Nanshan W-Mo polymetallic ore deposit in South Anhui Province[J]. Geological Survey and Research, 2011, 34(4):290-298.
[2] 施珂, 张达玉, 丁宁, 等. 皖南逍遥岩体的年代学、地球化学特征及其成因分析[J]. 吉林大学学报:地球科学版, 2017, 47(6):1746-1762.
[2] Shi K, Zhang D Y, Ding N, et al. Geochronology,geochemistry and formation of Xiaoyao rock in southern Anhui Province[J]. Journal of Jilin University:Earth Science Edition, 2017, 47(6):1746-1762.
[3] Song G X, Qin K Z, Li G M, et al. Mesozoic magmatism and metallogeny in the Chizhou area,middle-lower Yangtze valley,SE China:Constrained by petrochemistry,geochemistry and geochronology[J]. Journal of Asian Earth Sciences, 2014,91:137-153.
[4] 陈雪锋, 范裕, 庾江华, 等. 江南隆起带(安徽段)首次发现铷矿床及其意义[J]. 矿床地质, 2018, 37(6):1349-1354.
[4] Chen X F, Fan Y, Yu J H, et al. The first discovery of rubidium deposit in Jiangnan uplift belt (Anhui section) and its significance[J]. Mineral Deposits, 2018, 37(6):1349-1354.
[5] 赵玉琛. 皖南两花岗岩体的岩石学特征及成矿专属性判别[J]. 安徽地质, 1994, 4(4):31-43.
[5] Zhao Y C. Petrological characteristics and metallogenic specificity discrimination of two granite bodies in southern Anhui[J]. Geology of Anhui, 1994, 4(4):31-43.
[6] 周涛发, 袁峰, 侯明金, 等. 江南隆起带东段皖赣相邻区燕山期花岗岩类的成因及形成的地球动力学背景[J]. 矿物岩石, 2004, 24(3):65-71.
[6] Zhou T F, Yuan F, Hou M J, et al. Genesis and geodynamic background of yanshanian granitoids in the eastern Jiangnan uplift in the adjecent area of Anhui and Jiangxi Provinces,China[J]. Journal of Mineralogy and Petrology, 2004, 24(3):65-71.
[7] Castro A, Moreno-Ventas I, De La Rosa J D. H-type (hybrid) granitoids:A proposed revision of the granite-type classification and nomenclature[J]. Earth-Science Reviews, 1991, 31(3/4):237-253.
[8] 张虹, 戴圣潜, 管运财, 等. 皖南绩溪伏岭岩体岩石地球化学特征[J]. 中国地质, 2005, 32(3):411-416.
[8] Zhang H, Dai S Q, Guan Y C, et al. Petrology and geochemistry of the Fuling mass in Jixi,southern Anhui[J]. Chinese Geology, 2005, 32(3):411-416.
[9] 翁望飞, 支利庚, 蔡连友, 等. 皖南及邻区燕山期两个类型花岗岩地球化学对比与岩石成因[J]. 矿物岩石地球化学通报, 2011, 30(4):433-448.
[9] Weng W F, Zhi L G, Cai L Y, et al. Petrogenesis and geochemical comparison of two types of yanshanian granite in South Anhui and its surrounding area[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2011, 30(4):433-448.
[10] 周洁, 姜耀辉, 葛伟亚. 江南造山带东部旌德高Sr/Y花岗闪长岩的形成机制及其构造意义[J]. 地质学报, 2014, 88(1):53-62.
[10] Zhou J, Jiang Y H, Ge W Y. High Sr/Y Jingde pluton in the eastern Jiangnan Orogen,South China:Formation mechanism and tectonic implications[J]. Acta Geologica Sinica, 2014, 88(1):53-62.
[11] 李鹏举, 余心起, 邱骏挺, 等. 皖南侏罗—白垩纪两类花岗岩的岩石成因、氧逸度特征及成矿意义[J]. 岩石学报, 2016, 32(2):399-418.
[11] Li P J, Yu X Q, Qiu J T, et al. Petrogenesis,oxygen fugacity characteristics and mineralization significance of two kinds of Jurassic-Cretaceous granites in southern Anhui,SE China[J]. Acta Petrologica Sinica, 2016, 32(2):399-418.
[12] 闫峻, 后田结, 王爱国, 等. 皖南中生代早期成矿和晚期非成矿花岗岩成因对比[J]. 中国科学:地球科学, 2017, 47(11):1269-1291.
[12] Yan J, Hou T J, Wang A G, et al. Petrogenetic contrastive studies on the Mesozoic early stage ore-bearing and late stage ore-barren granites from the southern Anhui Province[J]. Scientia Sinica:Terrae, 2017, 47(11):1269-1291.
[13] 唐永成, 曹静平, 支利庚, 等. 皖东南区域地质矿产评价[M]. 北京: 地质出版社, 2010.
[13] Tang Y C, Cao J P, Zhi L G, et al. Evaluation of regional geology and mineral resources in southeast Anhui Province[M]. Beijing: Geological Publishing House, 2010.
[14] 于津海, 魏震洋, 王丽娟, 等. 华夏地块:一个由古老物质组成的年轻陆块[J]. 高校地质学报, 2006, 12(4):440-447.
[14] Yu J H, Wei Z Y, Wang L J, et al. Cathaysia block:A young continent composed of ancient materials[J]. Geological Journal of China Universities, 2006, 12(4):440-447.
[15] 侯明金. 江南隆起带(安徽部分)燕山晚期岩浆活动与深部过程[D]. 合肥: 合肥工业大学, 2005.
[15] Hou M J. The magmatic activities and its deepth process of the later yanshannian granitoids in the Jiangnan uplift in the area of Anhui Province[D]. Hefei: Hefei University of Technology, 2005.
[16] 郑勇, 余心起, 王德恩, 等. 安徽绩溪伏岭岩体隆升时代的磷灰石裂变径迹证据[J]. 地质论评, 2009, 55(3):385-394.
[16] Zheng Y, Yu X Q, Wang D E, et al. Exhumation history of the Fuling granite,southern Anhui:New insights from apatite fission track analysis[J]. Geological Review, 2009, 55(3):385-394.
[17] 沈渭洲, 凌洪飞, 李武显, 等. 中国东南部花岗岩类Nd-Sr同位素研究[J]. 高校地质学报, 1999, 5(1):22-32.
[17] Shen W Z, Ling H F, Li W X, et al. Nd-Sr isotopes of granites in southeast China[J]. Geological Journal of China Universities, 1999, 5(1):22-32.
[18] 陈芳, 王登红, 杜建国, 等. 安徽绩溪伏岭花岗岩LA-ICP-MS锆石U-Pb年龄的精确测定及其地质意义[J]. 岩矿测试, 2013, 32(6):970-977.
[18] Chen F, Wang D H, Du J G, et al. New dating of the Fuling granite body with LA-ICP-MS zircon U-Pb in Jixi,Anhui Province and their geological significance[J]. Rock and Mineral Analysis, 2013, 32(6):970-977.
[19] 白玉岭, 王宗起, 王涛, 等. 赣东北地区瑶里花岗岩年代学、地球化学及其岩石成因[J]. 岩石矿物学杂志, 2015, 34(1):35-50.
[19] Bai Y L, Wang Z Q, Wang T, et al. LA-ICP-MS zircon U-Pb age,geochemistry and petrogenesis of the Yaoli pluton in northeastern Jiangxi Province[J]. Acta Petrologica et Mineralogica, 2015, 34(1):35-50.
[20] 邢凤鸣, 徐祥. 皖南中生代花岗岩类Nd、Sr、Pb同位素特点[J]. 安徽地质, 1993, 3(1):35-41.
[20] Xing F M, Xu X. Nd,Sr,Pb isotopic geochemistry of the Mesozoic granitoids in south Anhui[J]. Geology of Anhui, 1993, 3(1):35-41.
[21] Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area,Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1):63-81.
[22] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 1994, 37(3/4):215-224.
[23] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643.
[24] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2):189-200.
[25] Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar:Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36(4):891-931.
[26] Frey F A, Green D H, Roy S D. Integrated models of basalt petrogenesis:A study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 1978, 19(3):463-513.
[27] Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3-4):347-359.
[28] Rudnick R L, Fountain D M. Nature and composition of the continental crust:A lower crustal perspective[J]. Reviews of Geophysics, 1995, 33(3):267-309.
[29] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society of London Special Publications, 1989, 42(1):313-345.
[30] Yuan F, Zhou T F, Yue S C, et al. Rare earths of magmatic rocks in yanshanian stage in adjacent region of Anhui and Jiangxi Provinces,Jiangnan uplift[J]. Journal of Rare Earths, 2003, 21(5):591-594,500.
[31] 陈江峰, 周泰禧, 李学明, 等. 安徽南部燕山期中酸性侵入岩的源区锶、钕同位素制约[J]. 地球化学, 1993, 22(3):261-268.
[31] Chen J F, Zhou T X, Li X M, et al. Sr and nd isotopic constraints on source regions of the intermediate and acid intrusions from southern Anhui Province[J]. Geochimica, 1993, 22(3):261-268.
[32] 邢凤鸣, 陈江峰, 徐祥, 等. 皖南浅变质岩和沉积岩的钕同位素特点及其大地构造意义[J]. 现代地质, 1991, 5(3):290-299.
[32] Xing F M, Chen J F, Xu X, et al. Nd isotopic characteristics of low grade metamorphicand sedimentary rocks from southern Anhui provinceand their significance in tectonics[J]. Geoscience, 1991, 5(3):290-299.
[33] 黄定堂. 灵山岩体演化特征及其与稀有金属的成矿关系[J]. 地质与勘探, 2003, 39(4):35-40.
[33] Huang D T. Evolving characteristics and related rare-metal metallogenesis of Lingshan rock body[J]. Geology and Prospecting, 2003, 39(4):35-40.
[34] Dostal J, Chatterjee A K. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia,Canada)[J]. Chemical Geology, 2000, 163(1-4):207-218.
[35] Weyer S, Münker C, Mezger K. Nb/Ta,Zr/Hf and REE in the depleted mantle:Implications for the differentiation history of the crust-mantle system[J]. Earth and Planetary Science Letters, 2003, 205(3-4):309-324.
[36] 张舒, 张招崇, 艾羽, 等. 安徽黄山花岗岩岩石学、矿物学及地球化学研究[J]. 岩石学报, 2009, 25(1):25-38.
[36] Zhang S, Zhang Z C, Ai Y, et al. The petrology,mineralogy and geochemistry study of the Huangshan granite intrusion in Anhui Province[J]. Acta Petrologica Sinica, 2009, 25(1):25-38.
[37] 朱光, 刘国生. 皖南江南陆内造山带的基本特征与中生代造山过程[J]. 大地构造与成矿学, 2000, 24(2):103-111.
[37] Zhu G, Liu G S. Basic characteristics and Mesozoic orogenicprocess of the Jiangnan intracontinentalorogenic belt in southern Anhui[J]. Geotectonica et Metallogenia, 2000, 24(2):103-111.
[38] Zhou J, Jiang Y H, Xing G F, et al. Geochronology and petrogenesis of Cretaceous A-type granites from the NE Jiangnan Orogen,SE China[J]. International Geology Review, 2013, 55(11):1359-1383.
[39] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48(1-4):43-55.
[40] Irber W. The lanthanide tetrad effect and its correlation with K/Rb,Eu/Eu,Sr/Eu,Y/Ho,and Zr/Hf of evolving peraluminous granite suites[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4):489-508.
[41] 穆尚涛, 邵拥军, 宋泽友, 等. 湖南仁里—传梓源伟晶岩型稀有金属矿床云母地球化学特征及其指示意义[J]. 中南大学学报:自然科学版, 2021, 52(9):2973-2989.
[41] Mu S T, Shao Y J, Song Z Y, et al. Geochemical characteristics and indication of mica in Renli-Chuanziyuan pegmatite type rare metal deposit in Hunan Province[J]. Journal of Central South University:Science and Technology, 2021, 52(9):2973-2989.
[42] Taylor S R. The application of trace element data to problems in petrology[J]. Physics and Chemistry of the Earth, 1965,6:133-213.
[43] Shaw D M. A review of K-Rb fractionation trends by covariance analysis[J]. Geochimica et Cosmochimica Acta, 1968, 32(6):573-601.
[44] 林德松. 钾、铷比值在研究某些岩石和矿床成因中的应用[J]. 地质与勘探, 1978, 14(6):45-48.
[44] Lin D S. Application of the ratio of potassium to rubidium in studying the genesis of some rocks and deposits[J]. Geology and Prospecting, 1978, 14(6):45-48.
[45] 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社,1984.
[45] Liu Y J, Cao L M, Li Z L, et al. Elemental geochemistry[M]. Beijing: Science Press,1984.
[46] Shearer C K, Papike J J, Laul J C. Chemistry of potassium feldspars from three zoned pegmatites,Black Hills,South Dakota:Implications concerning pegmatite evolution[J]. Geochimica et Cosmochimica, 1985, 49(3):663-673.
[47] 陆杰. 个旧花岗岩的微量元素和稀土元素地球化学演化特征[J]. 地球化学, 1987, 16(3):249-259.
[47] Lu J. Geochemical evolution characteristics of trace elements and ree in Gejiu granites[J]. Geochimica, 1987, 16(3):249-259.
[48] Ballouard C, Poujol M, Boulvais P, et al. Nb-Ta fractionation in peraluminous granites:A marker of the magmatic-hydrothermal transition[J]. Geology, 2016, 44(3):231-234.
[49] 王志强, 胡滑志帆, 陈斌, 等. 辽东半岛早白垩世三股流岩体岩石成因:微量元素模拟和Sr-Nd同位素的制约[J]. 岩石学报, 2020, 36(12):3683-3704.
[49] Wang Z Q, Hu H, Chen B, et al. The petrogenesis of the Early Cretaceous Sanguliu pluton in the Liaodong Peninsula,NE China:Constrained from the trace-element modelling and Sr-Nd isotopes[J]. Acta Petrologica Sinica, 2020, 36(12):3683-3704.
[50] Rollinson H R. Using geochemical data:Evaluation,presentation,interpretation[M]. England: Longman Scientific,1993.
[51] 张旗. 花岗质岩浆能够结晶分离和演化吗?[J]. 岩石矿物学杂志, 2012, 31(2):252-260.
[51] Zhang Q. Could granitic magmas experience fractionation and evolution?[J]. Acta Petrologica et Mineralogica, 2012, 31(2):252-260.
[52] Fiedrich A M, Bachmann O, Ulmer P, et al. Mineralogical,geochemical,and textural indicators of crystal accumulation in the Adamello Batholith (Northern Italy)[J]. American Mineralogist, 2017, 102(12):2467-2483.
[53] Putirka K D, Canchola J, Rash J, et al. Pluton assembly and the genesis of granitic magmas:Insights from the GIC pluton in cross section,Sierra Nevada Batholith,California[J]. American Mineralogist, 2014, 99(7):1284-1303.
[1] 谢岿锐, 宋旭锋, 周坤, 周余国, 佘中明, 唐鉴. 滇西南西盟—澜沧地区土壤稀土地球化学异常的发现及找矿意义[J]. 物探与化探, 2024, 48(3): 660-667.
[2] 杜惟一, 张冲, 韩华洋, 赵腾腾, 张文艺. 潜山花岗岩裂缝性储层阵列声波测井数值模拟研究[J]. 物探与化探, 2024, 48(2): 514-520.
[3] 张宏伟, 杨恩林, 焦树林, 王贵云, 杨善进. 七星关区耕地土壤Ge地球化学特征及其与作物的吸收关系[J]. 物探与化探, 2024, 48(2): 534-544.
[4] 杨济远, 胡新茁, 周敬, 齐朋超, 李泽阳, 孟家葆, 许凡, 张会彬, 齐慧云. 冀西北宣化盆地髫髻山组粗面岩年代学、地球化学特征及其地质意义[J]. 物探与化探, 2024, 48(1): 1-14.
[5] 周怡宁, 高艳芳, 常婵, 张必敏. 基于移动GIS的地球化学野外采集系统的设计与实现[J]. 物探与化探, 2024, 48(1): 201-209.
[6] 孙跃, 张振宇, 冯斌, 杨少平, 王之峰. 覆盖区矿产资源地球化学勘查方法技术研究新进展[J]. 物探与化探, 2023, 47(6): 1387-1399.
[7] 徐磊, 李俊, 瞿镪, 文方平, 赵萌生, 程琰勋, 徐杰, 王浩宇. 滇中中高山丘陵区大气干湿沉降元素地球化学特征及来源解析[J]. 物探与化探, 2023, 47(6): 1602-1610.
[8] 郑旭莹, 许科伟, 顾磊, 王国建, 李广之, 郭嘉琪, 邹雨, 腾格尔. 典型地热田环境微生物分布特征及其勘探意义[J]. 物探与化探, 2023, 47(5): 1127-1136.
[9] 万卫, 汪明启, 程志中, 范会虎, 左立波, 李俊辉. CO2、SO2气体地球化学测量方法在森林覆盖区找矿的试验研究[J]. 物探与化探, 2023, 47(5): 1137-1146.
[10] 万太平, 张丽, 刘汉粮. 黑龙江省额尔古纳地块战略性矿产锑区域地球化学特征及远景区预测[J]. 物探与化探, 2023, 47(5): 1179-1188.
[11] 姜冰, 刘阳, 吴振, 张德明, 孙增兵, 马健. 高密地区灌溉水及土壤氟地球化学特征[J]. 物探与化探, 2023, 47(5): 1348-1353.
[12] 向文帅, 白洋, 姜军胜, 雷义均, HUNDIE Melka, SISAY Degu, 张元培, 吴颖, 郑雄伟. 地球化学块体法在埃塞俄比亚铜矿资源评价中的应用[J]. 物探与化探, 2023, 47(4): 845-855.
[13] 杨星, 管育春, 邹滔, 李伟. 综合土壤和重砂测量在内蒙古扎鲁特旗坤得来扎拉格地区锡多金属找矿中的应用[J]. 物探与化探, 2023, 47(4): 868-880.
[14] 保善东, 谢祥镭, 王亚栋, 徐云甫, 张新远, 曾彪. 寒冷半干旱草原景观大比例尺微沟系测量样品粒级试验——以锲墨格山锂铍稀有矿为例[J]. 物探与化探, 2023, 47(3): 648-658.
[15] 张嘉升, 周伟, 李伟良, 祁晓鹏, 杨杰, 王璐. 陕西简池镇地区1∶2.5万水系沉积物测量地球化学特征及找矿潜力[J]. 物探与化探, 2023, 47(3): 659-669.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com