Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (1): 67-76    DOI: 10.11720/wtyht.2024.2583
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
海洋可控源电磁法与地震全波形二维联合反演研究
孔繁祥1(), 谭捍东2, 刘建勋1
1.中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
2.中国地质大学(北京) 地球物理与信息技术学院,北京 100083
Two-dimensional joint inversion based on the marine controlled-source electromagnetic method and seismic full-waveform
KONG Fan-Xiang1(), TAN Han-Dong2, LIU Jian-Xun1
1. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
2. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
全文: PDF(5740 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为降低单一地球物理反演方法的局限性以及反演中所存在的多解性等问题,开展了海洋可控源电磁法(MCSEM)与地震全波形的二维联合反演研究。MCSEM采用数据空间OCCAM反演算法,地震全波形采用梯度法反演算法,引入交叉梯度函数实现两种物性参数结果的相互耦合;开发出一套二维联合反演算法,并通过3组理论模型算例验证了算法的准确性。研究结果表明:MCSEM联合反演结果相对于单方法反演结果有显著改善和提升,主要体现在异常体的形态刻画、结构构造以及物性数值的恢复,这说明全波形的反演方法能够提高MCSEM反演结果的可靠性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孔繁祥
谭捍东
刘建勋
关键词 海洋可控源电磁法地震全波形交叉梯度联合反演    
Abstract

To reduce the limitations and the multiplicity of solutions of a single geophysical inversion method, this study investigated the two-dimensional joint inversion based on the marine controlled-source electromagnetic (MCSEM) method and seismic full-waveform inversion. The MCSEM method employs the data-space Occam’s algorithm, while the seismic full-waveform inversion utilizes the gradient algorithm. By incorporating a cross-gradient function for the mutual coupling of the two types of physical property parameters, this study developed a two-dimensional joint inversion method, whose accuracy was verified using three different models. As indicated by the results, compared to a single inversion method, the MCSEM-based joint inversion yielded significantly improved inversion results, predominantly in terms of the morphology characterization of anomalous bodies, as well as the reconstruction of their structure and textures and their physical property values. Therefore, the full-waveform inversion can enhance the reliability of the MCSEM inversion results.

Key wordsmarine controlled-source electromagnetic (MCSEM)    seismic full-waveform    cross-gradient    joint inversion
收稿日期: 2022-11-22      修回日期: 2023-03-27      出版日期: 2024-02-20
ZTFLH:  P631  
基金资助:中国地质调查局地质调查项目“柴达木盆地盐湖区物探综合调查”(DD20230298);中国地质科学院地球物理地球化学勘查研究所所长基金基本科研业务费项目“现代地质勘查工程技术集成与创新”(A2022P02)
作者简介: 孔繁祥(1995-),男,硕士,助理工程师,从事地震数据处理以及算法开发工作。Email:kfanxiang@mail.cgs.gov.cn
引用本文:   
孔繁祥, 谭捍东, 刘建勋. 海洋可控源电磁法与地震全波形二维联合反演研究[J]. 物探与化探, 2024, 48(1): 67-76.
KONG Fan-Xiang, TAN Han-Dong, LIU Jian-Xun. Two-dimensional joint inversion based on the marine controlled-source electromagnetic method and seismic full-waveform. Geophysical and Geochemical Exploration, 2024, 48(1): 67-76.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.2583      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I1/67
Fig.1  反演网格离散化示意
Fig.2  两种模型参数的交叉梯度计算结果
Fig.3  联合反演网格示意
Fig.4  联合反演流程
Fig.5  单一板状体理论模型示意
Fig.6  单一板状体模型反演结果及拟合差迭代曲线
Fig.7  复杂板状体理论模型示意
Fig.8  复杂板状体模型反演结果及拟合差迭代曲线
Fig.9  凹槽体理论模型示意
Fig.10  凹槽体模型反演结果及拟合差迭代曲线
[1] Haber E, Oldenburg D. Joint inversion:A structural approach[J]. Inverse Problems, 1997, 13(1):63-77.
doi: 10.1088/0266-5611/13/1/006
[2] Pak Y C, Li T L, Kim G S. 2D data-space cross-gradient joint inversion of MT,gravity and magnetic data[J]. Journal of Applied Geophysics, 2017, 143:212-222.
doi: 10.1016/j.jappgeo.2017.05.013
[3] Coutant O, Bernard M L, Beauducel F, et al. Joint inversion of P-wave velocity and density,application to La Soufrière of Guadeloupe hydrothermal system[J]. Geophysical Journal International, 2012, 191(2):723-742.
doi: 10.1111/gji.2012.191.issue-2
[4] 敬荣中, 鲍光淑, 陈绍裘. 地球物理联合反演研究综述[J]. 地球物理学进展, 2003, 18(3):535-540.
[4] Jing R Z, Bao G S, Chen S Q. A review of the researches for geophysical combinative inversion[J]. Progress in Geophysics, 2003, 18(3):535-540.
[5] Hu W Y, Abubakar A, Habashy T M. Joint electromagnetic and seismic inversion using structural constraints[J]. Geophysics, 2009, 74(6):R99-R109.
doi: 10.1190/1.3246586
[6] Brown V, Singh S C, Key K. Using seismic full waveform inversion to constrain controlled-source electromagnetic inversion[J]. SEG Expanded Abstracts, 2010, 29:619-623.
[7] da Silva N V, Morgan J, Warner M, et al. 3D constrained inversion of CSEM data with acoustic velocity using full waveform inversion[C]// SEG Technical Program Expanded Abstracts 2012.Society of Exploration Geophysicists, 2012.
[8] Mac-Gregor L, Bouchrara S, Tomlinson J, et al. Integrated analysis of CSEM,seismic and well log data for prospect appraisal:A case study from West Africa[J]. First Break, 2012, 30(4):43-49.
[9] Saunders J H, Herwanger J V, Pain C C, et al. Constrained resistivity inversion using seismic data[J]. Geophysical Journal International, 2005, 160(3):785-796.
doi: 10.1111/gji.2005.160.issue-3
[10] 杜润林. 海洋可控源电磁场和地震波场联合反演方法研究[D]. 东营: 中国石油大学(华东), 2015.
[10] Du R L. The research of joint inversion of marine controlled source electromagnetic and seismic[D]. Dongying: China University of Petroleum (Huadong), 2015.
[11] 李刚. 海洋可控源电磁与地震资料构造联合反演方法研究[D]. 青岛: 中国海洋大学, 2015.
[11] Li G. Jont inversion of marine controlled-source electromagnetic and seismic data using the structural constraints[D]. Qingdao: Ocean University of China, 2015.
[12] Hustedt B, Operto S, Virieux J. Mixed-grid and staggered-grid finite-difference methods for frequency-domain acoustic wave modelling[J]. Geophysical Journal International, 2004, 157(3):1269-1296.
doi: 10.1111/gji.2004.157.issue-3
[13] Jo C H, Shin C, Suh J H. An optimal 9-point,finite-difference,frequency-space,2-D scalar wave extrapolator[J]. Geophysics, 1996, 61(2):529-537.
doi: 10.1190/1.1443979
[14] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114(2):185-200.
doi: 10.1006/jcph.1994.1159
[15] Virieux J, Operto S. An overview of full-waveform inversion in exploration geophysics[J]. Geophysics, 2009, 74(6):WCC1-WCC26.
doi: 10.1190/1.3238367
[16] 周丽芬. 大地电磁与地震数据二维联合反演研究[D]. 北京: 中国地质大学(北京), 2012.
[16] Zhou L F. Two dimensional joint inversion of MT and seismic data[D]. Beijing: China University of Geosciences, 2012.
[17] Pratt R G. Seismic waveform inversion in the frequency domain,Part 1:Theory and verification in a physical scale model[J]. Geophysics, 1999, 64(3):888-901.
doi: 10.1190/1.1444597
[18] Ward S H, Hohmann G W. Electromagnetic theory for geophysical applications[M]//Electromagnetic Methods in Applied Geophysics. Society of Exploration Geophysicists, 1988:130-311.
[19] 刘颖. 海洋可控源电磁法二维有限元正演及反演[D]. 青岛: 中国海洋大学, 2014.
[19] Liu Y. 2D finite element modeling and inversion for marine controlled-source electromagnetic fields[D]. Qingdao: Ocean University of China, 2014.
[20] Mitsuhata Y. 2-D electromagnetic modeling by finite-element method with a dipole source and topography[J]. Geophysics, 2000, 65(2):465.
doi: 10.1190/1.1444740
[21] Siropunvarapor W, Egbert G. An efficient data-subspace inversion method for 2-D magnetotelluric data[J]. Geophysics, 2000, 65(3):791-803.
doi: 10.1190/1.1444778
[22] Meju M A, Gallardo L A, Mohamed A K. Evidence for correlation of electrical resistivity and seismic velocity in heterogeneous near-surface materials[J]. Geophysical Research Letters, 2003, 30(7):1373-1376.
[23] Gallardo L A, Meju M A. Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints[J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B3):B03311.
[24] 王涛. 磁法与可控源音频大地电磁法二维联合反演研究[D]. 北京: 中国地质大学(北京), 2016.
[24] Wang T. Two-dimensional joint inversion of magnetic and CSAMT methods[D]. Beijing: China University of Geosciences(Beijing), 2016.
[25] 郭长安. 电阻率法和地震全波形二维联合反演研究[D]. 北京: 中国地质大学(北京), 2018.
[25] Guo C A. Two-dimensional joint inversion of resistivity and seismic full-waveform method[D]. Beijing: China University of Geosciences(Beijing), 2018.
[1] 董健, 李肖鹏, 付超, 党智财, 赵晓博, 曾庆斌, 胡雪平, 王金辉. 高精度重磁方法寻找隐伏矽卡岩型铁矿[J]. 物探与化探, 2024, 48(1): 31-39.
[2] 连晟, 程正璞, 罗旋, 李敬杰, 田蒲源. 基于岩石物性引导的地球物理联合反演研究[J]. 物探与化探, 2023, 47(6): 1580-1587.
[3] 陈晓, 曾志文, 邓居智, 张志勇, 陈辉, 余辉, 王彦国. 基于不等式和Gramian约束的MT和重力正则化联合反演[J]. 物探与化探, 2023, 47(3): 575-583.
[4] 邓明, 王猛, 吴雯, 马晓茜, 罗贤虎. 海洋可控源电磁发射系统中的绝缘在线监测技术研究[J]. 物探与化探, 2022, 46(3): 537-543.
[5] 艾正敏, 叶益信, 汤文武, 陈晓, 杜家明. 基于非结构三角网格的海洋CSEM和MT二维联合反演研究[J]. 物探与化探, 2021, 45(1): 149-158.
[6] 徐云霞, 文鹏飞, 张宝金, 刘斌. OBS在琼东南海域水合物矿体识别中的应用[J]. 物探与化探, 2020, 44(6): 1276-1282.
[7] 刘畅, 李振春, 曲英铭, 徐夷鹏, 赵伟洁. 地震层析成像方法综述[J]. 物探与化探, 2020, 44(2): 227-234.
[8] 宁媛丽, 周子阳, 孙栋华. 重磁资料在鄂尔多斯盆地西南缘基底研究中的应用[J]. 物探与化探, 2020, 44(1): 34-41.
[9] 智庆全, 武军杰, 王兴春, 陈晓东, 杨毅, 张杰, 邓晓红. 三分量定源瞬变电磁解释技术及其在金属矿区的实验[J]. 物探与化探, 2016, 40(4): 798-803.
[10] 周印明, 刘雪军, 张春贺, 朱永山. 快速识别页岩气“甜点”目标的时频电磁勘探技术及应用[J]. 物探与化探, 2015, 39(1): 60-63,83.
[11] 戚志鹏, 智庆全, 李貅, 曾友强, 张莹莹. 大定源瞬变电磁三分量全域视电阻率定义与三分量联合反演[J]. 物探与化探, 2014, 38(4): 742-749.
[12] 林珍, 张莉, 钟广见. 重磁震联合反演在南海东北部地球物理解释中的应用[J]. 物探与化探, 2013, 37(6): 968-975.
[13] 刘建利, 李西周, 张泉. 重、磁、电联合反演在银额盆地定量解释中的应用[J]. 物探与化探, 2013, 37(5): 853-858.
[14] 刘天佑, 高文利, 冯杰, 习宇飞, 欧洋. 井中三分量磁测的梯度张量欧拉反褶积及应用[J]. 物探与化探, 2013, 37(4): 633-639.
[15] 王文争, 刘俊杰, 乌锐. PP-PS联合反演含气性预测方法及应用[J]. 物探与化探, 2011, 35(4): 516-520.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com