Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (1): 110-119    DOI: 10.11720/wtyht.2023.2606
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
联合核磁共振测井与Thomeer模型评价碳酸盐岩储层饱和度
陈星河1,2(), 张超谟1,2(), 朱林奇1,3, 张冲1,2, 张占松1,2, 郭建宏1,2
1.长江大学 地球物理与石油资源学院,湖北 武汉 430100
2.油气资源与勘探技术教育部重点实验室(长江大学),湖北 武汉 430100
3.中国科学院 深海科学与工程研究所,海南 三亚 572000
Evaluation of the saturation of carbonate reservoirs by combining the nuclear magnetic resonance logging and the Thomeer model
CHEN Xing-He1,2(), ZHANG Chao-Mo1,2(), ZHU Lin-Qi1,3, ZHANG Chong1,2, ZHANG Zhan-Song1,2, GUO Jian-Hong1,2
1. College of Geophysics and Petroleum Resources,Yangtze University,Wuhan 430100,China
2. Key Laboratory of Exploration Technologies for Oil and Gas Resources,Ministry of Education,Yangtze University,Wuhan 430100,China
3. Institute of Deep-sea Science and Engineering,Chinese Academy of Science,Sanya 572000,China
全文: PDF(4400 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

碳酸盐岩储层孔隙类型多样、孔隙结构复杂,传统的饱和度评价模型无法表征岩石的微观结构,给饱和度评价工作带来了极大的困难。针对该问题,本文以毛管压力曲线资料与核磁共振测井资料为基础,提出了结合核磁共振测井的Thomeer饱和度模型。分析压汞资料的孔隙系统结构信息,利用Thomeer函数拟合得到多孔隙类型的毛管压力曲线分布,将复杂的孔隙结构表征为多条Thomeer曲线的共同作用。核磁共振测井是唯一能够连续定量表征储层孔隙结构特征的测井方法,利用核磁共振横向弛豫时间谱参数T2算术平均值(T2LM)与核磁孔隙度(MPHS),结合R35岩石物理分类计算Thomeer参数BvPdG和最大孔喉直径模态元素Porositon,构建复杂孔隙结构碳酸盐岩的饱和度评价模型,该模型解决了实验手段无法开展连续地层孔隙结构评价研究的问题。将该模型应用到中东X油田复杂孔隙结构碳酸盐岩储层进行饱和度评价,与J函数模型、阿尔奇公式进行对比。结果表明该联合模型方法相比于J函数模型与阿尔奇公式,相对误差分别从0.496、0.442降低到0.272,且能较好地表征变化趋势,无论是在高饱和度储层还是低饱和度储层,都取得了较好的应用效果。该模型可以最大程度上避免复杂孔隙碳酸盐岩储层带来的影响,提高饱和度评价精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈星河
张超谟
朱林奇
张冲
张占松
郭建宏
关键词 碳酸盐岩饱和度核磁共振测井Thomeer函数毛管压力曲线    
Abstract

Carbonate reservoirs have various pores and complex pore structures.However,the microstructure of rocks cannot be characterized using conventional saturation evaluation models,making it extremely difficult to perform the saturation evaluation of carbonate reservoirs.Given this,this study proposed a Thomeer saturation model combined with the nuclear magnetic resonance (NMR) logging based on the data of capillary pressure curves and NMR logging.Specifically,information about the structure of the pore system in the mercury injection data was analyzed,and then the capillary pressure curves of multiple pore types were obtained through fitting using the Thomeer function.Finally,the complex pore structure was characterized using multiple Thomeer curves.The NMR logging is the only logging method that can continuously and quantitatively characterize the pore structure of reservoirs.The Thomeer parameters Bv,Pd,and G and the modal element Porositon of the maximum pore throat diameter were calculated using the logarithmic mean of T2 transverse relaxation time for NMR (T2LM) and the NMR total porosity (MPHS),as well as the classification of pore throat R35.Accordingly,the saturation evaluation model for carbonates reservoirs with complex pore structures was constructed.This model allows for the continuous evaluation of formation pore structure that cannot be achieved using experimental methods.This model was applied to the saturation evaluation of the carbonate reservoirs with complex pore structures in oilfield X in the Middle East.By comparison with the J function model and Archie's formula,this model decreased the relative error from 0.496 and 0.442,respectively to 0.272,better characterized the variation trend,and achieved encouraging application effects regardless of the saturation of reservoirs.Therefore,this model can minimize the impacts of carbonate reservoirs with complex pore structures and improve the precision of the reservoir saturation evaluation.

Key wordsCarbonate    saturation    nuclear magnetic resonance logging    Thomeer function    capillary pressure curve
收稿日期: 2021-11-19      修回日期: 2022-02-28      出版日期: 2023-02-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金青年基金项目(42106213);国家重大专项(2017ZX05032-003);长江大学教育部实验室开放基金项目(K2021-03);长江大学教育部实验室开放基金项目(K2021-08)
通讯作者: 张超谟(1962-),男,教授,主要从事测井地层评价、油藏描述等方向的工作。Email:zhangcm@yangtzeu.edu.cn
作者简介: 陈星河(1997-),男,硕士研究生,主要从事测井数据处理与综合解释研究工作。Email:1637715221@qq.com
引用本文:   
陈星河, 张超谟, 朱林奇, 张冲, 张占松, 郭建宏. 联合核磁共振测井与Thomeer模型评价碳酸盐岩储层饱和度[J]. 物探与化探, 2023, 47(1): 110-119.
CHEN Xing-He, ZHANG Chao-Mo, ZHU Lin-Qi, ZHANG Chong, ZHANG Zhan-Song, GUO Jian-Hong. Evaluation of the saturation of carbonate reservoirs by combining the nuclear magnetic resonance logging and the Thomeer model. Geophysical and Geochemical Exploration, 2023, 47(1): 110-119.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.2606      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I1/110
Fig.1  岩心孔渗关系
Fig.2  Thomeer原理
Fig.3  Thomeer雅克比行列式法参数提取
Fig.4  T2LMPorositon关系
Fig.5  PorositonPd1关系
Fig.6  MPHSBv1关系
Fig.7  Pd1G1关系
参数 计算公式
Porositon P = 10 3.0277 × ( l o g T 2 L M ) 2 - 9.1427 × l o g T 2 L M + 5.6812
Bv1 Bv1=120.98×MPHS-0.6085
Pd1 Pd1=P-1.0344×101.8
G1 G1= P d 1 0.809×10-3.1962
Table 1  Thomeer曲线1参数计算公式
Fig.8  以R35为基础的岩石物理分类
岩石物理分类 R35/μm
1 >8.94
2 5.91~8.94
3 2.45~5.91
4 <2.45
Table 2  岩石物理分类标准
岩石物理分类 Pd2 /MPa G2
1 1.045 0.296
2 24.187 0.329
3 19.563 0.418
4 26.371 0.233
Table 3  不同岩石物理分类的Thomeer曲线2参数取值
条件 体系 接触角θ/
(°)
界面张力σ/
(mN·m-1)
σcosθ/
(mN·m-1)
实验室 空气—水 0 72 72
油—水 30 48 42
空气—汞 140 480 367
油藏 水—油 30 30 26
油—气 0 50 50
气—水 0 44.6 44.6
Table 4  常见界面张力和润湿角
Fig.9  平均毛管压力曲线的J函数
Fig.10  MXX井部分层段测井解释成果(第7道为本文提出方法饱和度计算结果,第8道为J函数方法饱和度计算结果,第9道为阿尔奇公式饱和度计算结果)
Fig.11  在±5%精度下的效果对比分析
a—联合核磁共振测井的Thomeer饱和度模型;b—J函数饱和度模型;c—阿尔奇公式饱和度模型
[1] 童晓光, 张光亚, 王兆明, 等. 全球油气资源潜力与分布[J]. 石油勘探与开发, 2018, 45(4):727-736.
[1] Thong X G, Zhang G Y, Wang Z M, et al. Distribution and potential of global oil and gas resources[J]. Petroleum Exploration and Development, 2018, 45(4):727-736.
[2] 康玉柱. 世界油气资源潜力及中国海外油气发展战略思考[J]. 天然气工业, 2013, 33(3):1-4.
[2] Kang Y Z. Status of world hydrocarbon resource potential and strategic thinking of overseas oil and gas projects for China[J]. Natural Gas Industry, 2013, 33(3):1-4.
[3] 张宁宁, 何登发, 孙衍鹏, 等. 全球碳酸盐岩大油气田分布特征及其控制因素[J]. 中国石油勘探, 2014, 19(6):54-65.
[3] Zhang N N, He D F, Sun Y P, et al. Distribution patterns and controlling factors of giant carbonate rock oil and gas fields worldwide[J]. China Petroleum Exploration, 2014, 19(6):54-65.
[4] 高利君, 李宗杰, 李海英, 等. 塔里木盆地深层岩溶缝洞型储层三维雕刻“五步法”定量描述技术研究与应用[J]. 物探与化探, 2020, 44(3):691-697.
[4] Gao L J, Li Z J, Li H Y, et al. The deep karst fissure and cavern reservoir in Tarimbasin carved in three dimensions: Research and application of “five-step method” quantitative description technology[J]. Geophysical and Geochemical Exploration, 2020, 44(3):691-697.
[5] 屈雪峰, 赵中平, 雷启鸿, 等. 鄂尔多斯盆地合水地区延长组裂缝发育特征及控制因素[J]. 物探与化探, 2020, 44(2):262-270.
[5] Qu X F, Zhao Z P, Lei Q H, et al. Fracture development characteristics and controlling factors of Yanchang formation in Heshui area,Ordos Basin[J]. Geophysical and Geochemical Exploration, 2020, 44(2):262-270.
[6] Zhang X, Pang X, Jin Z, et al. Depositional model for mixed carbonate-clastic sediments in the Middle Cambrian Lower Zhangxia Formation,Xiaweidian,North China[J]. Advances in Geo-Energy Research, 2020, 4(1):29-42.
doi: 10.26804/ager.2020.01.04
[7] 胡勇, 于兴河, 陈恭洋, 等. 平均毛管压力函数分类及其在流体饱和度计算中的应用[J]. 石油勘探与开发, 2012, 39(6):733-738.
[7] Hu Y, Yu X H, Chen G Y, et al. Classification of the average capillary pressure function and its application in calculating fluid saturation[J]. Petroleum Exploration and Development, 2012, 39(6):733-738.
[8] Zhu L, Zhang C, Zhang Z, et al. High-precision calculation of gas saturation in organic shale pores using an intelligent fusion algorithm and a multi-mineral model[J]. Advances in Geo-Energy Research, 2020, 4(2):135-151.
doi: 10.26804/ager.2020.02.03
[9] Aguilera R. Analysis of naturally fractured reservoirs from sonic and resistivity logs[J]. Journal of Petroleum Technology, 1974, 26(11):1233-1238.
doi: 10.2118/4398-PA
[10] Honarpour M M, Sprunt E S, Hensel W M, et al. Compilation of electrical resistivity measurements performed by twenty-five laboratories[J]. Log Analysts, 1988, 29(1):13-29.
[11] Degraaf J D, Schipper B A, Smits R M M, et al. Measurements and evaluation of resistivity index curves[J]. Log Analysts, 1991, 32(5):583-595.
[12] Serra O. Formation microscanner image interpretation[C]// SMP 7028 Schlumberger Educational Service, 1989.
[13] Aguilera R F, Aguilera R. A triple porosity model for petrophysical analysis of naturally reservoirs[J]. Petrophysics, 2004, 45(2):157-166.
[14] Fleury M, Efnik M, Kalam M Z. Evaluation of water saturation from resistivity in a carbonate field from laboratory to logs[C]// CA 2004-22 the International Symposium of the Society of Core Analysts,2004.
[15] Kazatchenko E, Markov M, Mousatov A, et al. Simulation of the electrical resistivity of double porosity carbonate formations saturated with fluid mixtures[C]// SPWLA 46th Annual Logging Symposium, 2005.
[16] 潘和平, 王兴, 樊政军, 等. 储层原始含油饱和度计算方法研究[J]. 现代地质, 2000, 14(4):451-453.
[16] Pan H P, Wang X, Fan Z J, et al. Computing method of reservoir originality oil saturation[J]. Geoscience, 2000, 14(4):451-453.
[17] Leverett M C. Capillary behaviors in porous solids[J]. Transactions of the AIME, 1941, 142(1):152-169.
doi: 10.2118/941152-G
[18] Purcell W R. Capillary pressures—Their measurement using mercury and the calculation of permeability therefrom[J]. Journal of Petroleum Technology, 1949, 1(2):39-48.
doi: 10.2118/949039-G
[19] 司马立强, 李清, 杨毅, 等. 用J函数法求取碳酸盐岩储层饱和度方法探讨[J]. 岩性油气藏, 2014, 26(6):106-110.
[19] Sima L Q, Li Q, Yang Y, et al. Using J-function method to calculate saturation of carbonate reservoirs[J]. Lithologic Reservoirs, 2014, 26(6):106-110.
[20] 郭晓博. 采用孔隙体积法计算平均毛管压力曲线[J]. 中南大学学报:自然科学版, 2012, 43(11):4514-4521.
[20] Guo X B. Calculation of average capillary pressure curve using hole volume[J]. Journal of Central South University:Science and Technology, 2012, 43(11):4514-4521.
[21] Rafiei Y, Motie M. Improved reservoir characterization by employing hydraulic flow unit classification in one of Iranian carbonate reservoirs[J]. Advances in Geo-Energy Research, 2019, 3(3):277-286.
doi: 10.26804/ager.2019.03.06
[22] Zhang F, Zhang C. Evaluating the potential of carbonate sub-facies classification using NMR longitudinal over transverse relaxation time ratio[J]. Advances in Geo-Energy Research, 2021, 5(1):87-103.
doi: 10.46690/ager.2021.01.09
[23] 刘航宇, 田中元, 郭睿, 等. 复杂碳酸盐岩储层岩石分类方法研究现状与展望[J]. 地球物理学进展, 2017, 32(5):2057-2064.
[23] Liu H Y, Tian Z Y, Guo R, et al. Review and prospective of rock-typing for complex carbonate reservoirs[J]. Progress in Geophysics, 2017, 32(5):2057-2064.
[24] 张萌, 乔占峰, 高计县, 等. 伊拉克哈法亚油田Mishrif组MB1-2亚段局限台地碳酸盐岩储层特征及评价[J]. 东北石油大学学报, 2020, 44(5):35-45.
[24] Zhang M, Qiao Z F, Gao J X, et al. Characteristics and evaluation of carbonate reservoirs in restricted platform in the MB1-2 Sub-Member of Mishrif formation,Halfaya oilfield,Iraq[J]. Journal of Northeast Petroleum University, 2020, 44(5):35-45.
[25] Lucia F J. Petrophysical parameters estimated from visual descriptions of carbonate rocks:A field classification of carbonate pore space[J]. Journal of Petroleum Technology, 1983, 35(3):629-637.
doi: 10.2118/10073-PA
[26] Thomeer J H M. Introduction of a pore geometrical factor defined by the capillary pressure curve[J]. Journal of Petroleum Technology, 1960, 12(3):73-77.
[27] Buiting J J. Upscaling saturation-height technology for Arab carbonates for improved transition-zone characterization[J]. SPE Reservoir Evaluation and Engineering, 2011, 14(1):11-24.
doi: 10.2118/125492-PA
[28] 曹建胜, 武周. 牛顿法及带阻尼牛顿法的收敛域定理[J]. 南京师大学报:自然科学版, 1989, 12(2):24-27.
[28] Cao J S, Wu Z. Theorems of convergence region of Newton and Damped Newton methods[J]. Journal of Nanjing Normal University:Natural Science Edition, 1989, 12(2):24-27.
[29] 张关根, 赖翔友. 麻皮效应对压汞资料的影响[J]. 石油勘探与开发, 1988, 17(6):84-86.
[29] Zhang G G, Lai X Y. The effect of pockmarks effect on mercury injection data[J]. Petroleum Exploration and Development, 1988, 17(6):84-86.
[30] Clerke E A, Mueller H W, Phillips E C, et al. Application of Thomeer Hyperbolas to decode the pore systems,facies and reservoir properties of the Upper Jurassic Arab D limestone,Ghawar filed,Saudi Arabia:A “Rosetta Stone” approach[J]. GeoArabia, 2008, 13(4):113-160.
doi: 10.2113/geoarabia1304113
[31] Clerke E A. Permeability,relative permeability,microscopic displacement efficiency and pore geometry of M_1 bimodal pore systems in Arab-D limestone[J]. Society of Petroleum Engineers, 2009, 14(3):524-531.
[32] Buiting J J. Fully Upscaled saturation-height functions for reservoir modeling based on Thomeer's method for analyzing capillary pressure measurements[C]// SPE 105139 Middle East Oil and Gas Show and Conference,2007.
[33] Buiting J J, Clerke E A. Permeability from porosimetry measurements: derivation for a tortuous and fractal tubular bundle[J]. Journal of Petroleum Science and Engineers, 2013, 108:267-278.
[34] 高敏, 安秀华, 祗淑华, 等. 用核磁共振测井资料评价储层的孔隙结构[J]. 测井技术, 2000, 24(3):188-193.
[34] Gao M, An X H, Zhi S H, et al. Evaluating porous structure of reservoir with MRIL data[J]. Well Logging Technology, 2000, 24(3):188-193.
[35] Amaefule J O, Altunbay M. Enhanced reservoir description:Using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells[C]// SPE 26436 Annual Technical Conference and Exhibition of the society,1993.
[36] Al-Qenae K J, Al-Thaqafi S H. New approach for the classification of rock typing using a new technique for iso-pore throat lines in Winland's plot[C]// SPE 177327 Annual Caspian Technical Conference and Exhibition,2015.
[37] 欧阳健. 石油测井解释与储层描述[M]. 北京: 石油工业出版社,1994.
[37] Ouyang J. Well log interpretations and reservoir descriptions[M]. Beijing: Petroleum Industry Press,1994.
[1] 张昭, 殷全增, 张龙飞, 张大明, 张世晖, 黄国疏, 赵石峰, 杨彪, 台立勋, 张灯亮, 王进朝, 段刚. 综合物探技术在深部碳酸盐岩热储探测中的应用研究——以雄安新区为例[J]. 物探与化探, 2023, 47(4): 926-935.
[2] 王英梅, 焦雯泽, 刘生浩, 王茜, 宋瀚宇. 含天然气水合物沉积物的电阻率特性及阿尔奇公式的应用进展[J]. 物探与化探, 2023, 47(3): 782-793.
[3] 但光箭, 周成刚, 刘云宏, 李相文, 张亮亮, 张明, 王春阳. 轮古西地区奥陶系碳酸盐岩古暗河系统地震特征分析[J]. 物探与化探, 2023, 47(2): 290-299.
[4] 张明, 李相文, 金梦, 郑伟, 张磊, 马文高. 超深断控缝洞型储层迭代反演方法——以富满油田为例[J]. 物探与化探, 2023, 47(1): 22-30.
[5] 唐军, 刘沁园, 赖强, 吴煜宇, 许巍. 白云岩声电各向异性实验测量及分析[J]. 物探与化探, 2022, 46(6): 1492-1499.
[6] 张建伟, 杨卓静, 王新杰, 李胜涛, 赵玉军. 碳储深孔超声成像测井系统设计与应用[J]. 物探与化探, 2022, 46(6): 1500-1506.
[7] 罗卫锋, 胡志方, 甘伏平, 张庆玉, 康海霞, 张云枭. 南方碳酸盐岩地区页岩气钻探井位选址中的综合物探方法应用[J]. 物探与化探, 2022, 46(4): 824-829.
[8] 薛野, 杨帆, 刘厚裕, 刘明, 赵苏城, 蓝加达. 彭水地区碳酸盐岩山地地表地震激发接收因素优选及效果[J]. 物探与化探, 2022, 46(3): 608-617.
[9] 朱学娟, 单沙沙, 殷梓原, 孔雪. PNN测井清污混注水淹层剩余油饱和度计算方法[J]. 物探与化探, 2021, 45(3): 679-685.
[10] 顾端阳, 窦文博, 丁富寿, 严力, 吕浩. 疏松砂岩气藏低阻气层成因及识别研究——以柴达木盆地涩北气田为例[J]. 物探与化探, 2020, 44(3): 649-655.
[11] 马修刚, 周军, 蔡文渊, 王伟, 于伟高, 曹先军, 孙佩. 反射波成像与纵波径向速度成像在华北油田裂缝型碳酸盐岩储层勘探开发中的联合应用[J]. 物探与化探, 2020, 44(2): 271-277.
[12] 冯进, 赵冰, 张占松, 张超谟. 珠江口盆地惠州凹陷储层测井产能分级与识别方法[J]. 物探与化探, 2020, 44(1): 81-87.
[13] 詹少全, 丁梅花, 李爱勇, 王慧, 王导丽, 梁杰. 贵州碳酸盐岩山区广域电磁法勘探应用[J]. 物探与化探, 2020, 44(1): 88-92.
[14] 杨敬雅, 李相文, 刘永雷, 徐博, 高江涛, 王茂, 吴江勇, 张泉. 一种基于随钻VSP地震地质导向的钻井轨迹高效优化方法及其应用[J]. 物探与化探, 2019, 43(2): 257-265.
[15] 范雨霏, 潘保芝, 张芳. 复杂孔隙几何形态导电理论与火山岩饱和度模型研究[J]. 物探与化探, 2018, 42(1): 172-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com