Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (2): 362-372    DOI: 10.11720/wtyht.2022.1371
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
轴向各向异性地层瞬变电磁三分量响应特征
郭建磊()
中煤科工集团 西安研究院有限公司,陕西 西安 710077
Three-component responses of axially anisotropic formations using the transient electromagnetic method
GUO Jian-Lei()
Xi'an Research Institute, China Coal Technology and Engineering Group, Xi'an 710077, China
全文: PDF(3755 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

多数地层和裂隙积水区的电导率具有各向异性特性,地层的各向异性对瞬变电磁观测会产生较大的影响,尤其是对水平分量特征更加明显。为研究轴向各向异性地层的瞬变电磁三分量响应特征,基于时域有限差分算法,引入电导率张量构建控制方程,实现电导率轴向各向异性三维瞬变电磁三分量正演。通过与各向同性半空间模型和各向异性半空间模型的一维解析结果对比,验证了算法的准确性;建立各向异性半空间模型、层状模型、含水体模型并计算其回线源瞬变电磁三分量磁场响应。结果表明:水平方向电导率各向异性对三分量磁场响应均产生较大影响,其中x轴各向异性对∂By/∂t分量响应的影响大于∂Bx/∂t,y轴各向异性对∂Bx/∂t分量响应的影响大于∂By/∂t,z轴各向异性对三分量磁场响应几乎没有影响;浅部地层的电导率各向异性对三分量磁场响应的影响占主导成分;当采集点在x方向距异常体中心小于y方向时,x轴各向异性对三分量响应影响程度大于y轴各向异性,反之亦然。基于本文研究成果,可为各向异性地层条件下瞬变电磁三分量处理解释提供一些有价值的理论借鉴。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭建磊
关键词 轴向各向异性瞬变电磁时域有限差分三分量    
Abstract

The conductivity of most formations and fractured water areas is anisotropic, while the anisotropy of formations has great impacts on transient electromagnetic observations, especially on the characteristics of horizontal components. To study the three-component responses of axially anisotropic formations using the transient electromagnetic method, this study introduced a conductivity tensor to construct the governing equation to achieve the three-dimensional three-component forward modeling of the axially anisotropic conductivity using the transient electromagnetic method based on the finite-difference time-domain (FDTD) algorithm. This study verified the accuracy of the three-component forward modeling by comparing the three-dimensional three-component forward modeling results with the one-dimensional analytical results of the isotropic and anisotropic half-space models. Meanwhile, this study established the anisotropic half-space, layered, and water-bearing models and calculated loop-source three-component responses of the transient electromagnetic method. The results are as follows. The horizontal conductivity anisotropy greatly affected the three-component responses. The x-axis anisotropy had greater effects on the ∂By/∂t component response than those on ∂Bx/∂t component response, the y-axis anisotropy had greater effects on the ∂Bx/∂t component response than those on the ∂By/∂t component response, while the z-axis anisotropy had almost no effect on the three-component responses. Moreover, the three-component responses were primarily affected by conductivity anisotropy of shallow formations. The x-axis anisotropy had greater effects on the three-component responses than the y-axis anisotropy when collection points were closer to an anomaly center in the x-direction than in the y-direction, and vice versa. The results of this study provide some valuable theoretical references for the three-component processing and interpretation of the transient electromagnetic method of anisotropic formations.

Key wordsaxial    anisotropy    transient electromagnetic field    finite-difference time-domain    three-component
收稿日期: 2021-07-03      修回日期: 2021-09-24      出版日期: 2022-04-20
ZTFLH:  P631  
基金资助:陕西省自然科学基础研究计划项目(2020JQ-994);中煤科工集团西安研究院有限公司科技创新项目(2019XAYMS30);国家自然科学基金项目(41974162)
作者简介: 郭建磊(1990-),男,河南长葛人,助理研究员,研究方向为瞬变电磁正反演及其应用。Email: guojianlei@cctegxian.com
引用本文:   
郭建磊. 轴向各向异性地层瞬变电磁三分量响应特征[J]. 物探与化探, 2022, 46(2): 362-372.
GUO Jian-Lei. Three-component responses of axially anisotropic formations using the transient electromagnetic method. Geophysical and Geochemical Exploration, 2022, 46(2): 362-372.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1371      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I2/362
Fig.1  Yee晶胞网格剖分示意
Fig.2  电磁场时间采样分布示意
Fig.3  各向同性半空间模型垂直分量磁场响应(a)与相对误差(b)
Fig.4  各向异性半空间模型
模型 电导率/(S·m-1)
x y z
a 1 0.01 0.01
b 0.01 1 0.01
c 0.01 0.01 1
Table 1  图4模型的轴向电导率
Fig.5  各向异性半空间模型垂直分量磁场响应(a)与相对误差(b)
Fig.6  各向异性半空间模型瞬变电磁磁场三分量响应
Fig.7  地面磁场三分量0.1 ms时刻分布情况
各向异性类别 电导率/(S·m-1)
x y z
x轴各向异性 1 0.01 0.01
y轴各向异性 0.01 1 0.01
z轴各向异性 0.01 0.01 1
Table 2  层状模型的轴向电导率
Fig.8  各向异性层状模型瞬变电磁三分量响应
各向异性类别 电导率/(S·m-1)
x y z
各向同性 1 1 1
x轴各向异性 10 1 1
y轴各向异性 1 10 1
z轴各向异性 1 1 10
Table 3  含水体模型的轴向电导率
Fig.9  含水体相对于回线源位置俯视图
Fig.10  各向异性含水体瞬变电磁三分量响应
Fig.11  xyz轴各向异性瞬变电磁水平分量响应对比
[1] Kunz K S, Moran J H. Some effects of formation anisotropy on resistivity measurements in boreholes[J]. Geophysics, 1958, 23(4): 770-794.
doi: 10.1190/1.1438527
[2] 张晖, 高原, 石玉涛, 等. 鄂尔多斯块体北缘与西缘地区地壳各向异性特征[J]. 地球物理学报, 2020, 63(6):2230-2247.
[2] Zhang H, Gao Y, Shi Y T, et al. Crustal seismic anisotropy beneath the northern and western margins of the Ordos block[J]. Chinese Journal of Geophysics, 2020, 63(6): 2230-2247.
[3] 邓少贵, 刘天淋, 王磊, 等. 双轴各向异性介质多分量感应测井响应快速计算[J]. 地球物理学报, 2020, 63(1):362-373.
[3] Deng S G, Liu T L, Wang L, et al. Analytical solution of multicomponent induction logging response in biaxial anisotropic medium[J]. Chinese Journal of Geophysics, 2020, 63(1): 362-373.
[4] 刘云鹤, 殷长春, 蔡晶, 等. 电磁勘探中各向异性研究现状和展望[J]. 地球物理学报, 2018, 61(8):3468-3487.
[4] Liu Y H, Yin C C, Cai J, et al. Review on research of electrical anisotropy in electromagnetic prospecting[J]. Chinese Journal of Geophysics, 2018, 61(8): 3468-3487.
[5] 张韬. 中国主要聚煤期沉积环境与聚煤规律[M]. 北京: 地质出版社, 1992.
[5] Zhang T. Depositional environment and coal-accumulating regularities of main coal-accumulating stages in China[M]. Beijing: Geological Publishing House, 1992.
[6] 伍宇明, 兰恒星, 黄为清. 龙马溪页岩弹性各向异性与矿物分布之间的关系探讨[J]. 地球物理学报, 2020, 63(5):1856-1866.
[6] Wu Y M, Lan H X, Huang W Q. Discussion on the relationship between elastic anisotropy and mineral distribution of Longmaxi Shale[J]. Chinese Journal of Geophysics, 2020, 63(5): 1856-1866.
[7] Yin C C, Fraser D C. The effect of the electrical anisotropy on the response of helicopter-borne frequency-domain electromagnetic systems[J]. Geophysical Prospecting, 2004, 52(5): 399-416.
doi: 10.1111/j.1365-2478.2004.00424.x
[8] 孙英峰, 赵毅鑫, 王欣, 等. 基于同步辐射装置定量表征煤孔隙结构非均质性和各向异性[J]. 石油勘探与开发, 2019, 46(6):1128-1137.
[8] Sun Y F, Zhao Y X, Wang X, et al. Synchrotron radiation facility-based quantitative evaluation of pore structure heterogeneity and anisotropy in coal[J]. Petroleum Exploration and Development, 2019, 46(6): 1128-1137.
[9] 王玉涛, 刘震. 深部煤层非充分采动下覆岩裂隙场可视化探测研究[J]. 煤炭科学技术, 2020, 48(3):197-204.
[9] Wang Y T, Liu Z. Study on visual exploration of fissure field of overlying strata in deep coal seam under subcritical extraction[J]. Coal Science and Technology, 2020, 48(3): 197-204.
[10] 解滔, 卢军. 含裂隙介质中的视电阻率各向异性变化[J]. 地球物理学报, 2020, 63(4):1675-1694.
[10] Xie T, Lu J. Apparent resistivity anisotropic variations in cracked medium[J]. Chinese Journal of Geophysics, 2020, 63(4): 1675-1694.
[11] 申涛, 袁峰, 宋世杰, 等. P波各向异性检测在采空区导水裂隙带探测中的应用[J]. 煤炭学报, 2017, 42(1):197-202.
[11] Shen T, Yuan F, Song S J, et al. Application of P-wave anisotropy detection in detecting the conducting fracture zone[J]. Journal of China Coal Society, 2017, 42(1): 197-202.
[12] 周建美, 刘文韬, 李貅, 等. 双轴各向异性介质中回线源瞬变电磁三维拟态有限体积正演算法[J]. 地球物理学报, 2018, 61(1):368-378.
[12] Zhou J M, Liu W T, Li X, et al. Research on the 3D mimetic finite volume method for loop-source TEM response in biaxial anisotropic formation[J]. Chinese Journal of Geophysics, 2018, 61(1): 368-378.
[13] 刘亚军, 胡祥云, 彭荣华, 等. 回线源瞬变电磁法有限体积三维任意各向异性正演及分析[J]. 地球物理学报, 2019, 62(5):1954-1968.
[13] Liu Y J, Hu X Y, Peng R H, et al. 3D forward modeling and analysis of the loop-source transient electromagnetic method based on the finiye-colume method for an arbitrarily anisotropic medium[J]. Chinese Journal of Geophysics, 2019, 62(5): 1954-1968.
[14] 程久龙, 黄少华, 温来福, 等. 矿井全空间三维主轴各向异性介质瞬变电磁场响应特征研究[J]. 煤炭学报, 2019, 44(1):278-286.
[14] Cheng J L, Huang S H, Wen L F, et al. Response characteristics of three-dimensional axial anisotropic media for transient electromagnetic method in underground whole-space[J]. Journal of China Coal Society, 2019, 44(1): 278-286.
[15] 赵慧楠. 瞬变电磁三分量接收系统设计与实现[D]. 长春: 吉林大学, 2015.
[15] Zhao H N. Design and implementation of three-component transient electromagnetic receiving system[D]. Changchun: Jilin University, 2015.
[16] 戚志鹏, 智庆全, 李貅, 等. 大定源瞬变电磁三分量全域视电阻率定义与三分量联合反演[J]. 物探与化探, 2014, 38(4):742-749.
[16] Qi Z P, Zhi Q Q, Li X, et al. The definition of the full-zone apparent resistivity and the constrained inversion of the three components of fixed source TEM[J]. Geophysical & Geochemical Exploration, 2014, 38(4): 742-749.
[17] 智庆全, 武军杰, 王兴春, 等. 三分量定源瞬变电磁解释技术及其在金属矿区的实验[J]. 物探与化探, 2016, 40(4):798-803.
[17] Zhi Q Q, Wu J J, Wang X C, et al. Three-component interpretation technique of fixed source TEM and its experimental application in metallic ore district[J]. Geophysical & Geochemical Exploration, 2016, 40(4): 798-803.
[18] 武军杰, 李貅, 智庆全, 等. 电性源地—井瞬变电磁全域视电阻率定义[J]. 地球物理学报, 2017, 60(4):1595-1605.
[18] Wu J J, Li X, Zhi Q Q, et al. Full field apparent resistivity definition of borehole TEM with electric source[J]. Chinese Journal of Geophysics, 2017, 60(4): 1595-1605.
[19] 王鹏. 井—地瞬变电磁法浮动系数空间交汇与等效电流环反演方法研究[D]. 武汉: 中国地质大学(武汉), 2017.
[19] Wang P. Study on floating coefficient space intersection and equivalent current loop inversion of downhole TEM[D]. Wuhan: China University of Geosciences(Wuhan) 2017.
[20] 杨海燕, 李锋平, 岳建华, 等. 基于“烟圈”理论的圆锥型场源瞬变电磁优化反演[J]. 中国矿业大学学报, 2016, 45(6):1230-1237.
[20] Yang H Y, Li F P, Yue J H, et al. Optimal transient electromagnetic inversion of conical source based on smoke ring theory[J]. Journal of China University of mining & Technology, 2016, 45(6): 1230-1237.
[21] 范涛. 矿井巷道—钻孔瞬变电磁二维拟地震反演方法及应用[J]. 煤炭学报, 2019, 44(6):1804-1816.
[21] Fan T. Method and application on 2D pseudo-seismic inversion of roadway-borehole transient electromagnetic detection in coal mine[J]. Journal of China Coal Society, 2019, 44(6): 1804-1816.
[22] 孙怀凤, 李貅, 李术才, 等. 考虑关断时间的回线源激发TEM三维时域有限差分正演[J]. 地球物理学报, 2013, 56(3):1049-1064.
[22] Sun H, Li X, Li S C, et al. Three-dimensional FDTD modeling of TEM excited by a loop source considering ramp time[J]. Chinese Journal of Geophysics, 2013, 56(3): 1049-1064.
[23] 卢绪山. 隧道TBM机瞬变电磁响应三维并行模拟及干扰去除研究[D]. 西安: 长安大学, 2014.
[23] Lu X S. Three dimensional parallel simulation of transient electromagnetic response of tunnel boring machine and the elimination of its response[D]. Xi'an: Chang’an University, 2014.
[24] 李展辉, 黄清华. 复频率参数完全匹配层吸收边界在瞬变电磁法正演中的应用[J]. 地球物理学报, 2014, 57(4):1292-1299.
[24] Li Z H, Huang Q H. Application of complex frequency shifted perfectly matched layer absorbing boundary conditions in transient electromagnetic method modeling[J]. Chinese Journal of Geophysics, 2014, 57(4): 1292-1299.
[25] 孙怀凤, 程铭, 吴启龙, 等. 瞬变电磁三维FDTD正演多分辨网格方法[J]. 地球物理学报, 2018, 61(12):5096-5104.
[25] Sun H F, Cheng M, Wu Q L, et al. A multi-scale grid scheme in three-dimensional transient electromagnetic modeling using FDTD[J]. Chinese Journal of Geophysics, 2018, 61(12): 5096-5104.
[1] 游希然, 张继锋, 石宇. 基于人工神经网络的瞬变电磁成像方法[J]. 物探与化探, 2023, 47(5): 1206-1214.
[2] 张帆, 冯国瑞, 戚庭野, 余传涛, 张新军, 王超宇, 杜孙稳, 赵德康. 瞬变电磁法勘探煤矿不同层间距双层积水采空区的可行性研究[J]. 物探与化探, 2023, 47(5): 1215-1225.
[3] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[4] 邢涛, 王垚, 李建慧. 基于B样条插值的瞬变电磁响应一维精确计算[J]. 物探与化探, 2023, 47(5): 1316-1325.
[5] 何胜, 王万平, 董高峰, 南秀加, 魏丰丰, 白勇勇. 等值反磁通瞬变电磁法在城市地质调查中的应用[J]. 物探与化探, 2023, 47(5): 1379-1386.
[6] 吴国培, 张莹莹, 赵华亮, 周钟航, 李医滨. 基于横向约束的中心回线瞬变电磁一维反演[J]. 物探与化探, 2023, 47(4): 1024-1032.
[7] 王仕兴, 何可, 尹小康, 魏栋华, 赵思为, 郭明. 半航空瞬变电磁一维聚焦反演研究[J]. 物探与化探, 2023, 47(2): 410-419.
[8] 罗术, 陈争玉, 蓝宇骋, 刘阳飞, 段明杰. 等值反磁通瞬变电磁法探测滑坡堆积体的应用[J]. 物探与化探, 2023, 47(2): 523-529.
[9] 任喜荣, 李欣, 周志杰. 等值反磁通瞬变电磁法在金矿采空区探测中的应用[J]. 物探与化探, 2023, 47(2): 540-546.
[10] 唐军, 刘沁园, 赖强, 吴煜宇, 许巍. 白云岩声电各向异性实验测量及分析[J]. 物探与化探, 2022, 46(6): 1492-1499.
[11] 亓庆新, 席振铢, 徐昱, 木仁. 等值反磁通瞬变电磁法天线零磁通面位置的确定方法[J]. 物探与化探, 2022, 46(6): 1540-1544.
[12] 王荣军, 周超群, 崔杰, 谢明星, 秦壮杰. 强干扰环境下铁矿导水通道精细探测研究[J]. 物探与化探, 2022, 46(6): 1396-1402.
[13] 张文波, 张莹, 李建慧. 地面回线源瞬变电磁法一维反演系统及其应用[J]. 物探与化探, 2022, 46(5): 1258-1266.
[14] 王亮, 龙霞, 王婷婷, 席振铢, 陈兴朋, 钟明峰, 董志强. 等值反磁通瞬变电磁法在城市浅层空洞探测中的应用[J]. 物探与化探, 2022, 46(5): 1289-1295.
[15] 孙海川, 王文忠, 李治中, 刘永亮. 多激励源瞬变电磁探测方法在煤矿采空区的应用[J]. 物探与化探, 2022, 46(5): 1306-1314.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com