Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (1): 214-220    DOI: 10.11720/wtyht.2022.1036
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
一种基于差分接收的电磁感应阵列探头的设计与实现
吴燕民(), 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平
中国电波传播研究所,山东 青岛 266107
An EMI array sensor based on differential reception
WU Yan-Min(), PENG Zheng-Hui, YUAN Yong-Hu, ZHU Jin-Xiang, LIU Chuang, GE Wei, LING Guo-Ping
China Research Institute of Radiowave Propagation, Qingdao 266107, China
全文: PDF(3070 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了有效提升车载或无人平台电磁感应探测系统的综合性能,针对国内现有阵列探头技术存在土壤适应性差、定位精度低、抗干扰能力弱等不足,提出一种基于差分接收的阵列式电磁感应阵列探头设计方案。该方案总体采用单发射线圈内部水平排列多个接收线圈的结构形式,接收线圈采用双D形平衡式线圈实现差分接收,使系统在土壤适应性、定位精度及抗干扰能力等性能方面得到提升,从而有效提高未爆弹的探测效率。模拟雷场的实验结果表明,本文设计的阵列探头可实现对未爆弹的探测和定位。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴燕民
彭正辉
元勇虎
朱今祥
刘闯
葛薇
凌国平
关键词 电磁感应探测差分接收阵列探头双D形平衡式线圈未爆弹探测    
Abstract

This study proposes an EMI array sensor based on differential reception, which can effectively improve the comprehensive performance of the EMI system on a vehicle or robot in terms of soil adaptability, positioning accuracy, and anti-interference ability. The EMI array sensor consists of a large transmitting coil and multiple receiving coils, which are horizontally arranged in the transmitting coil. Meanwhile, the receiving coils are a kind of double-D coils to realize differential reception. In this manner, the detection efficiency of unexploded ordnances (UXO) can be effectively improved using the EMI array sensor. The simulated minefield detection test results show that the array sensor proposed in this study can be used for UXO detection and positioning.

Key wordsEMI detection    differential reception    array sensor    double-D coil    UXO detection
收稿日期: 2021-01-19      修回日期: 2021-09-09      出版日期: 2022-02-20
ZTFLH:  P631.3  
作者简介: 吴燕民(1983-),男,2008年毕业于电子科技大学,目前就职于中国电波传播研究所,主要从事地下目标探测方面的研究工作。Email: wuyanmin1983@163.com
引用本文:   
吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
WU Yan-Min, PENG Zheng-Hui, YUAN Yong-Hu, ZHU Jin-Xiang, LIU Chuang, GE Wei, LING Guo-Ping. An EMI array sensor based on differential reception. Geophysical and Geochemical Exploration, 2022, 46(1): 214-220.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1036      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I1/214
Fig.1  阵列式电磁感应探测系统原理框图
Fig.2  多时宽双极性脉冲发射时序
Fig.3  六路接收通道工作原理框图
Fig.4  基于差分接收的阵列式电磁感应探头平面结构
Fig.5  发射线圈结构示意
Fig.6  双D形平衡式差分接收线圈结构示意
Fig.7  算法流程
Fig.8  阵列传感器对金属目标的反应曲线
Fig.9  主特征提取
Fig.10  主要区域识别
Fig.11  72式金属反坦克地雷
Fig.12  雷场布置图
[1] 冯暄, 鹿琪, 刘材, 等. 防步兵地雷地球物理探测技术国内外研究动态[J]. 地球物理学进展, 2008,23(2):925-935.
[1] Feng X, Lu Q, Liu C, et al. Summarization of geophysical detection technologies for anti-personnel mines[J]. Progress in Geophysics, 2008,23(2):925-935.
[2] 倪宏伟, 房旭民. 地雷探测技术[M]. 北京: 国防工业出版社, 2003.
[2] Ni H W, Fang X M. Technology for landmine detection [M]. Beijing: National Defense Industry Press, 2003.
[3] Sato M, Kadoya Y. clearance operation in laos [C]// Detection and Sensing of Mines, Explosive objects, and Obscured Targets XXIII. Orlando,Florida,United States, Proc.SPIE 10628, April 2018:106280J-1-106280J-12.
[4] Wells P. Remote robotic countermine systems [C]// Detection and Sensing of Mines, Explosive objects, and Obscured Targets XV. Orlando,Florida,United States, Proc.SPIE 7664, April 2010:766418-1-766418-6.
[5] Herman H, Few D, Versteeg R. Modular countermine payload for small robots [C]// Detection and Sensing of Mines, Explosive objects, and Obscured Targets XV. Orlando,Florida,United States, Proc.SPIE 7664, April 2010: 76641D-1-76641D-9.
[6] Hibbard M W, Etebari A. NITEK-NVESD AMDS Program and interim field-ready system [C]//Detection and Sensing of Mines, Explosive objects, and Obscured Targets XV. Orlando, Florida, United States, Proc.SPIE 7664, April 2010: 766413-1-766413-12.
[7] Wilsom J N, Ramachandran G, Gaber P D, et al. Wideband EMI Pre-screening for Landmine Detection [C]// Detection and Sensing of Mines, Explosive objects, and Obscured Targets XIV. Orlando, Florida, United States, Proc.SPIE 7303, April 2009:730324-1-730324-8.
[8] Marble J, Hong K. Dual sensor platforms for UXO/Landmine detection using GPR and EMI [C]// Detection and Sensing of Mines, Explosive objects, and Obscured Targets XV. Orlando, Florida, United States, Proc.SPIE 7664, April 2010: 76641W-1-76641W-5.
[9] 高云泽, 叶盛波, 张晓娟, 等. 基于电磁感应和超宽带雷达的新型探测系统[J]. 电子测量技术, 2015,38(9):128-134.
[9] Gao Y Z, Ye S B, Zhang X J, et al. Novel detection system based on EMI and UWB[J]. Electronic Measurement Technology, 2015,38(9):128-134.
[10] 周立军, 梁连仲, 史冉. 国外地雷探测新技术[J]. 地质装备, 2003(4):3-6.
[10] Zhou L J, Liang L Z, Shi R. New Detection technology for Mines[J]. Equipment for Geotechnical Engineering, 2003(4):3-6.
[11] 徐玉清, 张国进, 高攀. 冲激脉冲雷达探雷[J]. 电波科学学报, 2001,16(4):546-550.
[11] Xu Y Q, Zhang G J, Gao P. Land-mine detection with impulse radar[J]. Chinese Journal of Radio Science, 2001,16(4):546-550.
[12] 吴桑. 外军核四极矩共振探雷技术发展现状[J]. 工兵装备研究, 2002,21(3):61-64.
[12] Wu S. The development of nuclear quadrupole resonance for landmine detection in foreign army[J]. Engineer Equipment Research, 2002,21(3):61-64.
[13] 张亚辉, 王玉龙, 刘皓挺, 等. 一种基于终点弹道气动噪声及落地声分析的未爆弹探测技术[J]. 兵工学报, 2015,36(8):1524-1532.
[13] Zhang Y H, Wang Y L, Liu H T, et al. UXO detection based on terminal ballistics acoustic signal analysis of aerodynamic noise and landing sound[J]. Acta Armamentarii, 2015,36(8):1524-1532.
[14] Rerkratn A, Petchmaneelumka W, Kongkauroptham J, et al. Pulse Induction Metal Dtector Using Sample and Hold Mrthod[C]// 11th International Conference on Control, Automation and Systems. KINTEX, Gyeonggi-do, Korea, 2011-10-26~29.
[15] Gabbay J E, Scott W R. Modeling the broadband electromagnetic induction response of three-dimensional targets [C]//Detection and Sensing of Mines, Explosive objects, and Obscured Targets XXIII. Orlando,Florida,United States, Proc.SPIE 10628, April 2018:106280P-1-106280P-13.
[1] 周钟航, 张莹莹. 山峰对电性源地面瞬变电磁响应的影响及校正方法[J]. 物探与化探, 2023, 47(5): 1236-1249.
[2] 张帆, 冯国瑞, 戚庭野, 余传涛, 张新军, 王超宇, 杜孙稳, 赵德康. 瞬变电磁法勘探煤矿不同层间距双层积水采空区的可行性研究[J]. 物探与化探, 2023, 47(5): 1215-1225.
[3] 陈海文, 叶益信, 杨烁健, 覃金生. 基于非结构有限元的电阻率超前探测中旁侧异常影响特征研究[J]. 物探与化探, 2023, 47(4): 975-985.
[4] 裴肖明, 冯国瑞, 戚庭野. 瞬变电磁法探测复杂状态下煤矿充水采空区物理模拟实验[J]. 物探与化探, 2021, 45(4): 1055-1063.
[5] 张斯薇, 吴荣新, 韩子傲, 吴海波. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2): 496-501.
[6] 张伟, 胡蕾, 张钊搏. LEMI-417型地球深部电磁场观测系统的数据格式解析[J]. 物探与化探, 2020, 44(4): 810-815.
[7] 张伟, 王永华, 廖国忠. 野外地质样品金元素测试分析箱的研制与应用[J]. 物探与化探, 2020, 44(2): 356-361.
[8] 张鹏辉, 张小博, 袁永真, 方慧, 刘建勋, 姜春香. 辽河外围北部秀水盆地大地电磁测深研究[J]. 物探与化探, 2019, 43(5): 986-996.
[9] 莫婉玲, 孙中华, 徐娅, 赵斌. 界面极化电压的外推法测量研究[J]. 物探与化探, 2017, 41(3): 484-488.
[10] 熊俊楠, 孙铭, 彭超, 王泽根, 刘姗, 周坚. 基于探地雷达的城镇燃气PE管道探测方法[J]. 物探与化探, 2015, 39(5): 1079-1084.
[11] 麻昌英, 柳建新, 孙娅, 刘海飞. 高频大地电磁测深法与双频激电法在水文地质调查中的应用[J]. 物探与化探, 2015, 39(5): 944-947.
[12] 刘成禹, 林毅鹏, 林超群, 刘汗青. 球状孤石在探地雷达探测成果中的表现特征[J]. 物探与化探, 2015, 39(4): 860-866.
[13] 黄理善, 侯一俊, 杨红, 王建超, 赵毅, 张力. 斑岩型铜矿床带条件约束的CSAMT数据精细处理和反演解释[J]. 物探与化探, 2015, 39(4): 817-822.
[14] 赵翠荣, 胡通海, 郭福强. 一种用于混凝土结构探测的探地雷达天线阵列的设计[J]. 物探与化探, 2015, 39(3): 633-636,640.
[15] 蔡连初. 探地雷达圆形测线探测方法[J]. 物探与化探, 2015, 39(3): 637-640.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com