Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (1): 150-159    DOI: 10.11720/wtyht.2022.1123
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
低阻页岩电阻率主控因素研究
崔瑞康1(), 孙建孟1, 刘行军2, 文晓峰2
1.中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
2.中油集团测井公司 长庆分公司,陕西 西安 710065
Major controlling factors of low-resistance shale gas reservoirs
CUI Rui-Kang1(), SUN Jian-Meng1, LIU Xing-Jun2, WEN Xiao-Feng2
1. China University of Petroleum (East China),Qingdao 266580,China
2. Changqing Branch,China National Logging Corporation,Xi'an 710065,China
全文: PDF(7367 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

龙马溪组页岩是现阶段国内勘探的主要层位之一。川南扬子地区下古生界的龙马溪组气层存在低电阻率特征,仅从测井响应上很难与水层区别。为此,在现有常规测井、钻井取心、生产动态等资料的基础上,结合大量铸体薄片、QEMSCAN和X全岩衍射等岩心分析实验,对该地区低阻气层的成因机制进行了深入研究,结果表明:川南扬子地区下古生界的龙马溪组低阻气层的主控因素有3个:黏土矿物的附加导电性、过成熟有机质完全石墨化和有机质纹层分布形式。实际应用结果表明:研究区低阻气层的成因为发育的有机质纹层和有机质部分石墨化,即页岩气储层表现为低阻往往都是多种因素相互叠加、相互影响造成的,在分析时需要根据不同地区、不同层段分析相应地质、测井和岩心资料,并且需要利用上下层段对比和邻井对比等方法判断储层低阻的主控因素。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔瑞康
孙建孟
刘行军
文晓峰
关键词 页岩气低阻岩层测井评价影响因素    
Abstract

The Longmaxi Formation is one of the major exploration horizons of shale in China at present. The gas-bearing sediments in the Lower Paleozoic Longmaxi Formation in the Yangtze area, South Sichuan are characterized by low resistivity. Therefore, it is difficult to distinguish the gas-bearing sediments from aquifers only using logging response. Given this, this study investigated the genetic mechanisms of low-resistivity gas-bearing sediments in the study area in depth using existing data of conventional logging, core drilling, and production-related dynamic conditions, as well as a large number of core analyses and experiments, including casting thin sections, QEMSCAN, and X whole-rock diffraction. According to the study results, three major controlling factors in the low-resistivity gas-bearing sediments of the Lower Paleozoic Longmaxi Formation in the Yangtze region, South Sichuan include the additional conductivity of clay minerals, the complete graphitization of over-mature organic matter, and the distribution pattern of organic matter laminae. The practical application results indicate that the low-resistivity gas-bearing sediments in the study area were formed due to the organic matter laminae developing and the partial graphitization of organic matter. That is, the low resistivity of the shale gas reservoirs tends to be caused by the mutual superimposition and effects of multiple factors. Therefore, it is necessary to analyze the geological, logging, and core data according to various zones and horizons and employ the correlation between upper and lower horizons and between adjacent wells to determine the major controlling factors of the low resistivity of the shale gas reservoirs.

Key wordsshale gas    low-resistivity formation    logging evaluation    influencing factors
收稿日期: 2021-03-12      修回日期: 2021-08-19      出版日期: 2022-02-20
ZTFLH:  P631  
基金资助:国家科技重大专项(2017ZX05036-005-003);国家自然科学基金项目(41874138)
作者简介: 崔瑞康(1996-),博士研究生,主要研究方向为测井解释与方法应用。Email: 1763389483@qq.com
引用本文:   
崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
CUI Rui-Kang, SUN Jian-Meng, LIU Xing-Jun, WEN Xiao-Feng. Major controlling factors of low-resistance shale gas reservoirs. Geophysical and Geochemical Exploration, 2022, 46(1): 150-159.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1123      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I1/150
Fig.1  研究区矿物含量分布和黏土矿物分布
Fig.2  黏土矿物与电阻率关系
Fig.3  矿物质定量分析
Fig.4  电阻率与RO之间的统计关系
Fig.5  RO与孔径分布之间的统计关系
Fig.6  岩石各组分对电阻率的影响
Fig.7  荧光显微镜下有机质纹层分布特征
a—龙马溪组灰黑色含硅质泥岩,采样深度为3 084.09 m,测得电阻率为0.1 Ω·m,发亮的黏土矿物(沸石)含量较高,呈顺层节理,有机质纹层也较为明显;b—龙马溪组黑色页岩,采样深度为3 931.72 m,测得电阻率为10 Ω·m,由于有机质及黏土矿物分布较混乱,纹层断续分布;c—龙马溪组黑色页岩,采样深度为4 039.3 m,测得电阻率为15.42 Ω·m,有机质含量较低,纹层零散分布
Fig.8  偏光显微镜下有机质纹层特征
a—龙马溪组灰黑色含硅质泥岩,采样深度3 084.09 m,电阻率为0.1 Ω·m,多个纹层相互堆叠,形成界面不明显的富有机质层;b—龙马溪组黑色页岩,采样深度3 931.72 m,电阻率为10 Ω·m,部分纹层有机质呈块状分布,多个纹层相互堆叠,形成界面不明显的含有机质层;c—龙马溪组黑色页岩,采样深度4 039.3 m,电阻率为15.42 Ω·m,富有机质纹层和含有机质纹层相互堆叠,形成递变层
矿物名称 含量/% 矿物名称 含量/%
石英 48.72 蒙脱石 0.43
伊利石 13.80 金红石 0.37
钠长石 8.56 磷灰石 0.29
方解石 8.41 石膏/硬石膏 0.10
钾长石 3.68 中长石 0.02
黄铁矿 3.62 锆石 0.01
白云石 3.48 高岭石 0.01
绿泥石 3.19 闪锌矿 0.01
黑云母 2.66 角闪石 0.01
白云母 1.98 海绿石 0.01
奥长石 0.63 钠云母 0.01
Table 1  页岩薄片矿物组成
Fig.9  QEMSCAN页岩薄片
Fig.10  被有机质充填的黏土纹层
Fig.11  富含有机物的烃源岩电阻率和有机质电阻率的关系曲线
Fig.12  A井测井解释成果
矿物类型 体积分数/% 平均值/%
硅质矿物 16.9~62.2 34.83
黏土矿物 12.7~69.5 33.75
碳酸盐矿物 0~70.4 27.15
Table 2  岩心矿物分析结果
[1] 于庆洲. 低阻油层的主要成因机理研究[D]. 北京:中国地质大学(北京), 2005.
[1] Yu Q Z. Mechanism study on the main causes of forming low resistivity pay [D]. Beijing: China University of Geosciences (Beijing), 2005.
[2] 孙建孟. 基于新“七性”关系的煤层气、页岩气测井评价[J]. 测井技术, 2013,37(5):457-465.
[2] Sun J M. Coalbed methane and shale gas evaluation based on new seven related[J]. Well Logging Technology, 2013,37(5):457-465.
[3] 张晋言, 孙建孟. 利用测井资料评价泥页岩油气“五性”指标[J]. 测井技术, 2012,36(2):146-153.
[3] Zhang J Y, Sun J M. Log evaluation on shale hydrocarbon reservoir[J]. Well Logging Technology, 2012,36(2):146-153.
[4] 张作清, 郑炀, 孙建孟. 页岩气评价“六性关系”研究[J]. 油气井测试, 2013,22(1):65-70.
[4] Zhang Z Q, Zheng Y, Sun J M. “Six parameter relationship” study of shale gas reservoir[J]. Well Testing, 2013,22(1):65-70.
[5] 孙建孟, 陈钢花, 杨玉征, 等. 低阻油气层评价方法[J]. 石油学报, 1998(3):83-88.
[5] Sun J M, Chen G H, Yang Y Z, et al. Low contrast resistivity reservoir evaluation method[J]. Acta Petrolei Sincia, 1998(3):83-88.
[6] 孙建孟, 熊铸, 罗红, 等. 扬子地区下古生界页岩气储层低阻成因分析及测井评价[J]. 中国石油大学学报:自然科学版, 2018,42(5):47-56.
[6] Sun J M, Xiong Z, Luo H, et al. Mechanism analysis and logging evaluation of low resistivity in lower Paleozoic shale gas reservoirs of Yangtze region[J]. Journal of China University of Petroleum:Edition of Natural Science, 2018,42(5):47-56.
[7] 谢小国, 罗兵, 尹亮先, 等. 低阻页岩气储层影响因素分析[J]. 四川地质学报, 2017,37(3):433-437.
[7] Xie X G, Luo B, Yin L X, et al. Influence Factors of Low Resistivity Shale Gas Reservoir[J]. Acta Geologica Sichuan, 2017,37(3):433-437.
[8] 杨小兵, 杨争发, 谢冰, 等. 页岩气储层测井解释评价技术[J]. 天然气工业, 2012,32(9):33-36,128-129.
[8] Yang X B, Yang Z F, Xie B, et al. Logging interpretation and evaluation technology of shale gas reservoir [J]. Natural Gas Industry, 2012,32(9):33-36,128-129.
[9] 徐锦绣, 吕洪志, 刘欢, 等. 渤海LD油田低阻油层成因机理与评价方法[J]. 中国海上油气, 2018,30(3):47-55.
[9] Xu J X, Lyu H Z, Liu H, et al. Genesis mechanism and evaluation methods for low-resistivity oil layers in the Bohai LD oilfield[J]. China Offshore Oil and Gas, 2018,30(3):47-55.
[10] 赵文龙. 川南地区志留系龙马溪组页岩储层电性研究[D]. 成都:成都理工大学, 2015.
[10] Zhao W L. Reservoir of electricity of Silurian Longmaxi shale in South Sichuan area[D]. Chengdu: Chengdu University of Technology, 2015.
[11] 王长江. 延长地区陆相页岩气储层低阻成因机理研究[C]// 西安石油大学、陕西省石油学会.2019油气田勘探与开发国际会议论文集. 2019:642-643.
[11] Wang C J. Study on the formation mechanism of low resistivity of continental shale gas reservoir in Yanchang area[C]. Xi’an Shiyou University, Shaanxi Petroleum Society. 2019 International Conference on Oil and Gas Exploration and Development. 2019: 642-643.
[12] 杨凯. 四川盆地海陆相页岩岩相特征及电学特征差异性研究[D]. 成都:成都理工大学, 2018.
[12] Yang K. Study on the difference of lithofacies and electrical characteristics of Marine and terrestrial shale in Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2018.
[13] 杨娇, 陆嫣, 刘伟新, 等. 珠江口盆地W油田低阻油层特殊成因机理[J]. 中国海上油气, 2014,26(4):41-45.
[13] Yang J, Liu Y, Liu W X, et al. Special origins of low-resistivity oil layers in W oilfield, Pearl River Mouth basin[J]. China Offshore Oil and Gas, 2014,26(4):41-45.
[14] 王维斌, 郭杜凯, 陈旭峰, 等. 鄂尔多斯盆地吴起地区延长组长6_1低阻油层成因分析及识别方法[J]. 油气地质与采收率, 2017,24(2):38-45,89.
[14] Wang W B, Guo D K, Chen X F, et al. Genesis analysis and identification methods of Chang 6_ 1 low resistivity oil pays in Yanchang Formation in Wuqi area, Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2017,24(2):38-45,89.
[15] 王友净, 宋新民, 何鲁平, 等. 高尚堡深层低阻油层的地质成因[J]. 石油学报, 2010,31(3):426-431.
[15] Wang Y J, Song X M, He L P, et al. Geologic origin of low-resistivity layers in deep reservoir of Gaoshangpu Oilfield[J]. Acta Petrolei Sinica, 2010,31(3):426-431.
[16] 罗水亮, 许辉群, 刘洪, 等. 柴达木盆地台南气田低阻气藏成因机理及测井评价[J]. 天然气工业, 2014,34(7):41-45.
[16] Luo S L, Xu H Q, Liu H, et al. Genetic mechanism and logging evaluation of low-resistivity gas reservoirs in the Tainan Gas Field, eastern Qaidam Basin[J]. Natural Gas Industry, 2014,34(7):41-45.
[17] 于红岩, 李洪奇, 郭兵, 等. 基于成因机理的低阻油层精细评价方法[J]. 吉林大学学报:地球科学版, 2012,42(2):335-343.
[17] Yu H Y, Li H Q, Guo B, et al. Low-Resistivity oil layers fine evaluation approaches based on mechanism[J]. Journal of Jilin University:Earth Science Edition, 2012,42(2):335-343.
[18] 郑华, 李云鹏, 徐锦绣, 等. 渤海海域低阻油层地质成因机理与识别——以辽东湾旅大A油田为例[J]. 断块油气田, 2018,25(1):22-28.
[18] Zheng H, Li Y P, Xu J X, et al. Geological genetic mechanism and identification of low resistivity reservoir in Bohai sea area: a case study of LD—A Oilfield in Liaodong Bay[J]. Fault-Block Oil & Gas Field, 2018,25(1):22-28.
[19] 林国松, 康凯, 郭富欣, 等. 渤海海域蓬莱油田低阻油层成因模式研究[J]. 特种油气藏, 2019,26(3):68-73.
[19] Lin G S, Kang K, Guo F X, et al. Low-resistivity reservoir genesis patterns of Penglai oilfield in Bohai Sea[J]. Special Oil & Gas Reservoirs, 2019,26(3):68-73.
[20] 罗兴平, 苏东旭, 王振林, 等. 核磁共振测井在低阻油层评价中的应用——以准噶尔盆地阜东斜坡头屯河组为例[J]. 新疆石油地质, 2017,38(4):470-476.
[20] Luo X P, Su D X, Wang Z L, et al. Application of NMR logging in low-resistivity reservoir evaluation: A case study of Toutunhe Formation on the Eastern Fukang Slope, Junggar Basin[J]. Xinjiang Petroleum Geology, 2017,38(4):470-476.
[21] 黄涛. 页岩岩心复电阻率实验室测试与分析[D]. 成都:成都理工大学, 2016.
[21] Huang T. Complex resistivity of shale core laboratory testing and analysis[D]. Chengdu: Chengdu University of Technology, 2016.
[22] 王香增. 陆相页岩气[M]. 北京: 石油工业出版社, 2014.
[22] Wang X Z. Continental shale gas [M]. Beijing: Petroleum Industry Press, 2014.
[23] 刘天琳, 姜振学, 张昆, 等. 识别海相页岩石墨化程度的方法和装置[P]. CN107064230A, 2017-08-18.
[23] Liu T L, Jiang Z X, Zhang K, et al. Method and apparatus for identifying graphitization degree of Marine shale [P]. CN107064230A, 2017-08-18.
[24] Kethireddy N, Heidari Z, Chen H. Quantifying the Effect of Kerogen on Electrical Resistivity Measurements in Organic-Rich Source Rocks[C]//SPWLA 54th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts, 2013.
[25] 张建坤, 何生, 颜新林, 等. 页岩纳米级孔隙结构特征及热成熟演化[J]. 中国石油大学学报:自然科学版, 2017,41(1):11-24.
[25] Zhang J K, He S, Yan X L, et al. Structural characteristics and thermal evolution of nanoporosity in shales[J]. Journal of China University of Petroleum:Edition of Natural Science, 2017,41(1):11-24.
[26] 李楚雄, 肖七林, 陈奇, 等. 页岩纳米级孔隙在有机质熟化过程中的演化特征及影响因素[J]. 石油实验地质, 2019,41(6):901-909.
[26] Li C X, Xiao Q L, Chen Q, et al. Evolution characteristics and controls of shale nanopores during thermal maturation of organic matter[J]. Petroleum Geology & Experiment, 2019,41(6):901-909.
[27] 邵龙义, 刘磊, 文怀军, 等. 柴北缘盆地YQ-1井中侏罗统石门沟组泥页岩纳米孔隙特征及影响因素[J]. 地学前缘, 2016,23(1):164-173.
[27] Shao L Y, Liu L, Wen H J, et al. Characteristics and influencing factors of nanopores in the Middle Jurassic Shimengou Shale in Well YQ-1 of the Northern Qaidam Basin[J]. Earth Science Frontiers, 2016,23(1):164-173.
[28] 霍培丽, 张登峰, 王倩倩, 等. 页岩吸附性能及作用规律[J]. 化工进展, 2016,35(1):74-82.
[28] Huo P L, Zhang D F, Wang Q Q, et al. Perspective of adsorption performance of shale[J]. Chemical Industry and Engineering Progress, 2016,35(1):74-82.
[29] Yang A, Firdaus G, Heidari Z. Electrical resistivity and chemical properties of kerogen isolated from organic-rich mudrocks[J]. Geophysics, 2016,81(6):D643-D655.
doi: 10.1190/geo2016-0071.1
[30] 李凯, 游海涛, 刘兴起. 中国湖泊沉积物纹层年代学研究进展[J]. 湖泊科学, 2017,29(2):266-275.
[30] Li K, You H T, Liu X Q. Review on lake sediment varve chronology in China[J]. Lake Science, 2017,29(2):266-275.
[31] 李婷婷, 朱如凯, 白斌, 等. 酒泉盆地青西凹陷下沟组湖相细粒沉积岩纹层特征及研究意义[J]. 中国石油勘探, 2015,20(1):38-47.
[31] Li T T, Zhu R K, Bai B, et al. Characteristics and Research Significance of Fine Lacustrine Sedimentary Rock Laminations of Xiagou Formation in Qingxi Depression of Jiuquan Basin[J]. China Petroleum Exploration, 2015,20(1):38-47.
[32] 施振生, 邱振, 董大忠, 等. 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征[J]. 石油勘探与开发, 2018,45(2):339-348.
[32] Shi Z S, Qiu Z, Dong D Z, et al. Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018,45(2):339-348.
[1] 多吉卫色, 次仁旺堆, 尼玛洛卓, 周鹏, 尼玛次仁. 西藏白朗县农田系统硒含量特征及影响因素[J]. 物探与化探, 2023, 47(4): 1118-1126.
[2] 黄平安, 王夏青, 唐湘玲, 王玉堂, 李玮, 罗增, 吕飞亚. X射线荧光光谱岩心扫描影响因素及校正方法的研究进展[J]. 物探与化探, 2023, 47(3): 726-738.
[3] 李世宝, 杨立国, 熊万里, 马志超, 袁宏伟, 段吉学. 内蒙古巴彦淖尔市临河区富硒耕地硒形态特征及其影响因素[J]. 物探与化探, 2023, 47(2): 477-486.
[4] 邹山进洪. 闽侯县表层土壤及农产品硒含量特征[J]. 物探与化探, 2023, 47(1): 247-256.
[5] 余长恒, 郑健, 张旭林, 周昊, 王安平, 刘磊, 李易. 川南地区页岩气井平台钻前工程物探集成技术[J]. 物探与化探, 2023, 47(1): 99-109.
[6] 赵军, 孟欣佳, 李冰, 刘志民. 坑道聚焦直流激电法电流场分布特性及探测影响因素分析[J]. 物探与化探, 2023, 47(1): 120-128.
[7] 罗卫锋, 胡志方, 甘伏平, 张庆玉, 康海霞, 张云枭. 南方碳酸盐岩地区页岩气钻探井位选址中的综合物探方法应用[J]. 物探与化探, 2022, 46(4): 824-829.
[8] 吴雯, 王猛, 杨迪琨, 陈默, 任林彬. 页岩气水力压裂分布式微弱电场监测技术初探[J]. 物探与化探, 2022, 46(3): 557-562.
[9] 殷启春, 王元俊, 周道容, 张丽, 孙桐. 复电阻率法在安徽南陵盆地海相页岩气勘探中的应用[J]. 物探与化探, 2022, 46(3): 668-677.
[10] 侯进凯, 宋延斌, 朱瑞祯, 莘丰培, 周建川, 鲁富兰, 姚婕. 洛阳市伊川县鸦岭镇—汝阳县小店镇一带表层土壤硒形态研究[J]. 物探与化探, 2022, 46(2): 511-517.
[11] 欧居刚, 王小兰, 杨晓, 邓小江, 黄诚, 李文佳. 水平井地震导向技术探索与应用——以四川盆地复杂地区页岩气井为例[J]. 物探与化探, 2021, 45(3): 551-559.
[12] 刘昊娟. 地应力地震预测及其在南川页岩气开发中的应用[J]. 物探与化探, 2021, 45(3): 560-568.
[13] 张勇, 马晓东, 李彦婧, 蔡景顺. 深度学习在南川页岩气含气量预测中的应用[J]. 物探与化探, 2021, 45(3): 569-575.
[14] 刘伟男, 张超谟, 朱林奇, 胡松, 孔政, 邓瑞. 页岩气水平井TOC测井评价新方法[J]. 物探与化探, 2021, 45(2): 423-431.
[15] 李欢, 黄勇, 张沁瑞, 贾三满, 徐国志, 冶北北, 韩冰. 北京平原区土壤地球化学特征及影响因素分析[J]. 物探与化探, 2021, 45(2): 502-516.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com