Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (1): 130-140    DOI: 10.11720/wtyht.2022.1116
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于界面反演增强的位场边缘识别方法
冯旭亮1,2(), 魏泽坤1,2
1.西安石油大学 陕西省油气成藏地质学重点实验室,陕西 西安 710065
2.西安石油大学 地球科学与工程学院,陕西 西安 710065
An edge recognition technique enhanced with interface inversion for potential field data
FENG Xu-Liang1,2(), WEI Ze-Kun1,2
1. Shaanxi Key Laboratory of Petroleum Accumulation Geology, Xi’an Shiyou University, Xi’an 710065, China
2. School of Earth Sciences and Engineering, Xi’an Shiyou University, Xi’an 710065, China
全文: PDF(11443 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

准确识别含油气构造及控矿断裂与岩体等地质边界是能源和资源勘查的重要任务之一,重、磁位场边缘识别方法在研究地质边界方面有独特的优势,已成为能源和资源勘查中不可或缺的重要手段。为增强位场边缘识别方法对深部小规模构造的识别能力,本文将界面反演与归一化总水平导数垂向导数(NVDR_THDR)位场边缘识别技术结合起来,首先利用密度界面反演技术处理重力异常,使结果能突出小规模地质构造特征,之后将NVDR_THDR作为边界提取和增强的技术处理反演的界面深度。裂陷盆地模型试验及孤立形体组合模型试验结果表明,本文方法具有明显的边缘增强效果,并且能在一定程度上平衡深部和浅部异常。最后将该方法用于鄂尔多斯盆地北部重力资料处理之中,结果也表明了本文方法可以更好地识别盆地基底小规模断裂,实际应用效果较好。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯旭亮
魏泽坤
关键词 边缘识别密度界面反演重力异常边界增强    
Abstract

One of the pivotal tasks in energy and resources exploration is identifying geological boundaries such as petroliferous structure, ore-controlling faults, and rock mass boundaries. The edge recognition of gravity and magnetic potential data has unique advantages in the detection of geological boundaries, and has become an indispensable and important means in energy and resources exploration. We have combined interface inversion and normalized vertical derivative of the total horizontal derivative (NVDR_THDR) for potential field data to improve the effect of the potential field edge recognition method for deep small-scale geological bodies. Firstly, we invert the gravity anomaly using density interface inversion method to make the anomaly more prominent of the small-scale geological structures, then the NVDR_THDR technique is used as an edge extraction and enhancement method to deal with the density interface inversion result. The results conducted with rifted basin model and the isolated bodies model show that the proposed method has obvious advantages of edge enhancement and can balance the deep and shallow anomalies to some extent. The real gravity data test of the northern Ordos Basin also show that our method can detect the small-scale faults in the basement of the basin, which indicates that this method can be successfully used in real data processing.

Key wordsedge recognition    density interface inversion    gravity anomaly    edge enhancement
收稿日期: 2021-03-05      修回日期: 2021-04-19      出版日期: 2022-02-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目“基于不同范数的密度界面三维重力反演研究”(41904115)
作者简介: 冯旭亮(1989-),男,博士,讲师,硕士生导师,主要从事重、磁勘探方法理论与应用及构造地球物理解释研究工作。Email: fxlchd@163.com
引用本文:   
冯旭亮, 魏泽坤. 基于界面反演增强的位场边缘识别方法[J]. 物探与化探, 2022, 46(1): 130-140.
FENG Xu-Liang, WEI Ze-Kun. An edge recognition technique enhanced with interface inversion for potential field data. Geophysical and Geochemical Exploration, 2022, 46(1): 130-140.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1116      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I1/130
Fig.1  裂陷盆地模型及其重力异常
Fig.2  裂陷盆地模型位场边缘识别结果
Fig.3  密度差不同时裂陷盆地模型位场边缘识别结果
Fig.4  孤立形体组合及其重力异常
Fig.5  孤立形体组合模型位场边缘识别结果
Fig.6  鄂尔多斯盆地北部重力异常及位场边缘识别结果
Fig.7  鄂尔多斯盆地北部位场边缘识别结果与地震剖面对比(地震剖面据文献[48])
[1] 张遂泉. 浅谈重力在有色金属矿区的地质效果[J]. 物探与化探, 1990,14(5):393-396.
[1] Zhang S Q. A rough discussion on geological effects of gravity survey in nonferrous metal districts[J]. Geophysical and Geochemical Exploration, 1990,14(5):393-396.
[2] 刘光鼎, 郝天珧, 刘伊克. 重磁研究对认识盆地的意义[J]. 地球物理学进展, 1996,11(2):1-15.
[2] Liu G D, Hao T Y, Liu Y K. The significance of gravity and magnetic research for knowing sedimentary basins[J]. Progress in Geophysics, 1996,11(2):1-15.
[3] 娄德波, 宋国玺, 李楠, 等. 磁法在我国矿产预测中的应用[J]. 地球物理学进展, 2008,23(1):249-256.
[3] Lou D B, Song G X, Li N, et al. The application of magnetic method in national mineral prediction[J]. Progress in Geophysics, 2008,23(1):249-256.
[4] 阴江宁, 肖克炎. 物探方法在矿产预测中的应用[J]. 地质学刊, 2012,36(3):333-336.
[4] Yin J N, Xiao K Y. Application of geophysical exploration method in mineral resources prediction[J]. Journal of Geology, 2012,36(3):333-336.
[5] 王万银, 邱之云, 杨永, 等. 位场边缘识别方法研究进展[J]. 地球物理学进展, 2010,25(1):196-210.
[5] Wang W Y, Qiu Z Y, Yang Y, et al. Some advances in the edge recognition of the potential field[J]. Progress in Geophysics, 2010,25(1):196-210.
[6] Hood P, McClure D J. Gradient measurements in ground magnetic prospecting[J]. Geophysics, 1965,30(3):403-410.
doi: 10.1190/1.1439592
[7] Hood P J, Teskey D J. Aeromagnetic gradiometer program of the Geological Survey of Canada[J]. Geophysics, 1989,54(8):1012-1022.
doi: 10.1190/1.1442726
[8] Cordell L. Gravimetric express of graben faulting in Santa Fe Country and the Espanola Basin[C]// New Mexico: New Mexico Geol. Soc. Guidebook, 30rd Field Conf., 1979: 59-64.
[9] Grauch V J S, Cordell L. Limitation of determining density or magnetic boundaries form the horizontal gradient of gravity or pseudo-gravity data[J]. Geophysics, 1987,52(1):118-121.
doi: 10.1190/1.1442236
[10] Nabighian M N. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation[J]. Geophysics, 1972,37(3):507-517.
doi: 10.1190/1.1440276
[11] Nabighian M N. Toward a three dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations[J]. Geophysics, 1984,49(6):780-786.
doi: 10.1190/1.1441706
[12] Li X. Understanding 3D analytic signal amplitude[J]. Geophysics, 2006,71(2):L13-L16.
doi: 10.1190/1.2184367
[13] Miller H G, Singh V. Potential field tilt-a new concept for location of potential field sources[J]. Journal of Applied Geophysics, 1994,32(2-3):213-217.
doi: 10.1016/0926-9851(94)90022-1
[14] Miller H G, Singh V. Semiquantitative techniques for the identification and removal of directional trends from potential field data[J]. Journal of Applied Geophysics, 1994,32(2-3):199-211.
doi: 10.1016/0926-9851(94)90021-3
[15] 王想, 李桐林. Tilt梯度及其水平导数提取重磁源边界位置[J]. 地球物理学进展, 2004,19(3):625-630.
[15] Wang X, Li T L. Location the boundaries of magnetic or gravity sources with Tdr-Thdr methods[J]. Progress in Geophysics, 2004,19(3):625-630.
[16] Wijns C, Perez C, Kowalczyk P. Theta map: Edge detection in magnetic data[J]. Geophysics, 2005,70(4):L39-L43.
doi: 10.1190/1.1988184
[17] Verduzco B, Fairhead J D, Green C M, et al. The meter reader-New insights into magnetic derivatives for structural mapping[J]. The Leading Edge, 2004,23(2):116-119.
doi: 10.1190/1.1651454
[18] 王彦国, 罗潇, 邓居智, 等. 基于改进tilt梯度的三维磁异常解释技术[J]. 石油地球物理勘探, 2019,54(3):685-691.
[18] Wang Y G, Luo X, Deng J Z, et al. 3D magnetic data interpretation based on improved tilt angle[J]. Oil Geophysical Prospecting, 2019,54(3):685-691.
[19] Ekinci Y L, Ertekin C, Yigitbaş E. On the effectiveness of directional derivative based filters on gravity anomalies for source edge approximation: Synthetic simulations and a case study from the Aegean graben system (western Anatolia, Turkey)[J]. Journal of Geophysics and Engineering, 2013,10(3):1-15.
[20] 赵希刚, 吴汉宁, 柏冠军, 等. 重磁异常解释断裂构造的处理方法及图示技术[J]. 地球物理学进展, 2008,23(2):414-421.
[20] Zhao X G, Wu H N, Bai G J, et al. Magnetic and gravity data processing method and imaging techniques for faulted structure interpretation[J]. Progress in Geophysics, 2008,23(2):414-421.
[21] 夏玲燕, 吴汉宁, 柏冠军, 等. 柴达木盆地航磁资料微弱信息增强技术研究及在线性构造识别中的应用[J]. 地球物理学进展, 2008,23(4):1058-1062.
[21] Xia L Y, Wu H N, Bai G J, et al. Research on enhancing weak signal technology and recognition of linear structures using aerial-magnetic data in the Qaidam Basin[J]. Progress in Geophysics, 2008,23(4):1058-1062.
[22] 肖锋, 吴燕冈, 孟令顺. 重力异常图中的边界增强和提取技术[J]. 吉林大学学报:地球科学版, 2011,41(4):1197-1203.
[22] Xiao F, Wu Y G, Meng L S. Edge enhancement and detection technology in gravity anomaly map[J]. Journal of Jilin University:Earth Science Edition, 2011,41(4):1197-1203.
[23] Hidalgo-Gato M C, Barbosa V C F. Edge detection of potential-field sources using scale-space monogenic signal: Fundamental principles[J]. Geophysics, 2015,80(5):J27-J36.
doi: 10.1190/geo2015-0025.1
[24] Alamdar K, Rouhani A K, Ansari H. A new edge detection method based on the analytic signal of tilt angle (ASTA) for magnetic anomalies[C]// Istanbul International Geophysical Conference and Oil & Gas Exhibition, 2012.
[25] Cooper G R J. Reducing the dependence of the analytic signal amplitude of aeromagnetic data on the source vector direction[J]. Geophysics, 2014,79(4):J55-J60.
doi: 10.1190/geo2013-0319.1
[26] 英高海, 姚长利, 郑元满, 等. 基于磁异常的边界特征增强方对比研究[J]. 地球物理学报, 2016,59(11):4383-4398.
[26] Ying G H, Yao C L, Zheng Y M, et al. Comparative study on methods of edge enhancement of magnetic anomalies[J]. Chinese Journal of Geophysics, 2016,59(11):4383-4398.
[27] 马国庆, 杜晓娟, 李丽丽. 利用水平与垂直导数的相关系数进行位场数据的边界识别[J]. 吉林大学学报:地球科学版, 2011,41(S1):345-348.
[27] Ma G Q, Du X J, Li L L. Edge detection of potential field data using correlation coefficients of horizontal and vertical derivatives[J]. Journal of Jilin University:Earth Sciences Edition, 2011,41(S1):345-348.
[28] 马国庆, 杜晓娟, 李丽丽. 位场数据边界识别的新方法——增强型水平导数法[J]. 地球物理学进展, 2013,28(1):402-408.
[28] Ma G Q, Du X J, Li L L. New edge detection method of potential field data-enhanced horizontal derivative method[J]. Progress in Geophysics, 2013,28(1):402-408.
[29] Ma G, Liu C, Li L. Balanced horizontal derivative of potential field data to recognize the edges and estimate location parameters of the source[J]. Journal of Applied Geophysics, 2014,108:12-18.
doi: 10.1016/j.jappgeo.2014.06.005
[30] 王彦国, 张凤旭, 刘财, 等. 位场垂向梯度最佳自比值的边界检测技术[J]. 地球物理学报, 2013,56(7):3463-3472.
[30] Wang Y G, Zhang F X, Liu C, et al. Edge detection in potential fields using optimal auto-ratio of vertical gradient[J]. Chinese Journal of Geophysics, 2013,56(7):3463-3472.
[31] Du W, Wu Y, Guan Y, et al. Edge detection in potential field using the correlation coefficients between the average and standard deviation of vertical derivatives[J]. Journal of Applied Geophysics, 2014,143:231-238.
doi: 10.1016/j.jappgeo.2017.01.002
[32] 于平, 张琦, 张冲. 基于水平方向解析信号的均衡重力位场边界识别方法[J]. 地球物理学报, 2019,61(10):3734-3743.
[32] Yu P, Zhang Q, Zhang C. A new method of balanced edge detection for the gravity potential-field based on horizontal analytical signal[J]. Chinese Journal of Geophysics, 2019,61(10):3734-3743.
[33] 郭灿文, 郇恒飞, 马永. 利用水平导数与垂向导数标准偏差的相关系数法识别磁源边界[J]. 地质与勘探, 2020,56(2):418-426.
[33] Guo C W, Huan H F, Ma Y. Identification of magnetic source boundaries using correlation coefficients of standard deviation of horizontal and vertical derivatives[J]. Geology and Exploration, 2020,56(2):418-426.
[34] Pham L T, Oksum E, Do T D. Edge enhancement of potential field data using the logistic function and the total horizontal gradient[J]. Acta Geodaetica et Geophysica, 2019,54:143-155.
doi: 10.1007/s40328-019-00248-6
[35] 王赛昕, 刘林静. 均值归一化总水平导数边界识别方法[J]. 工程地球物理学报, 2011,8(6):699-704.
[35] Wang S X, Liu L J. Edge detection by equalized and normalized amplitude of total horizontal derivatives[J]. Chinese Journal of Engineering Geophysics, 2011,8(6):699-704.
[36] Ma G, Li L. Edge detection in potential fields with the normalized total horizontal derivative[J]. Computers & Geosciences, 2012,41:83-87.
doi: 10.1016/j.cageo.2011.08.016
[37] 李丽丽, 黄大年, 韩立国. 归一化总水平导数法在位场数据解释中的应用[J]. 地球物理学报, 2014,57(12):4123-4131.
[37] Li L L, Huang D N, Han L G. Application of the normalized total horizontal derivative (NTHD) in the interpretation of potential field data[J]. Chinese Journal of Geophysics, 2014,57(12):4123-4131.
[38] Li L, Huang D, Han L. Normalized edge detection, and the horizontal extent and depth of geophysical anomalies[J]. Applied Geophysics, 2014,11(2):149-157.
doi: 10.1007/s11770-014-0436-2
[39] Wang W, Pan Y, Qiu Z. A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data[J]. Applied Geophysics, 2009,6(3):226-233.
doi: 10.1007/s11770-009-0026-x
[40] 王万银, 冯旭亮, 高玲举, 等. 重磁方法在图尔库班套铜镍矿区勘查中的应用[J]. 物探与化探, 2014,38(3):423-429.
[40] Wang W Y, Feng X L, Gao L J, et al. The application of gravity and magnetic techniques to the prospecting for the Tuerkubantao copper-nickel ore district[J]. Geophysical and Geochemical Exploration, 2014,38(3):423-429.
[41] 张菲菲, 王万银, 杨金玉, 等. 根据重力数据研究南海北部陆缘断裂带的延伸问题[J]. 地球物理学进展, 2014,29(5):2113-2119.
[41] Zhang F F, Wang W Y, Yang J Y, et al. Research on the extension of faults zones in northern margin of the South China Sea based on the gravity data[J]. Progress in Geophysics, 2014,29(5):2113-2119.
[42] 罗新刚, 王万银, 张功成, 等. 基于重力资料的南海及邻区断裂分布特征研究[J]. 地球物理学报, 2018,61(10):4255-4268.
[42] Luo X G, Wang W Y, Zhang G C, et al. Study on distribution features of faults based on gravity data in the South China Sea and its adjacent areas[J]. Chinese Journal of Geophysics, 2018,61(10):4255-4268.
[43] 赵强. 归一化总水平导数垂向导数法在位场数据解释中的应用[J]. 物探与化探, 2018,42(2):374-380.
[43] Zhao Q. The application of normalized total horizontal derivative vertical derivative method to the interpretation of in situ data[J]. Geophysical and Geochemical Exploration, 2018,42(2):374-380.
[44] Bott M P H. The use of rapid digital computing methods for direct gravity interpretation of sedimentary basin[J]. Geophysical Journal Royal Astronomical Society, 1960,3(1):63-67.
doi: 10.1111/gji.1960.3.issue-1
[45] Silva J B C, Santos D F, Gomes K P. Fast gravity inversion of basement relief[J]. Geophysics, 2014,79(5):G79-G91.
doi: 10.1190/geo2014-0024.1
[46] Feng X, Wang W, Yuan B. 3D gravity inversion of basement relief for a rift basin based on combined multinorm and normalized vertical derivative of the total horizontal derivative techniques[J]. Geophysics, 2018,83(5):G107-G118.
doi: 10.1190/geo2017-0678.1
[47] 冯旭亮, 袁炳强, 李玉宏, 等. 渭河盆地基底三维变密度重力反演[J]. 石油地球物理勘探, 2019,54(2):461-471.
[47] Feng X L, Yuan B Q, Li Y H, et al. Basement depth estimation based on gravity anomalies in Weihe Basin with 3D variable density contrast model[J]. Oil Geophysical Prospecting, 2019,54(2):461-471.
[48] 包洪平, 邵东波, 郝松立, 等. 鄂尔多斯盆地基底结构及早期沉积盖层演化[J]. 地学前缘, 2019,26(1):33-43.
[48] Bao H P, Shao D B, Hao S L, et al. Basement structure and evolution of early sedimentary cover of the Ordos Basin[J]. Earth Science Frontiers, 2019,26(1):33-43.
[1] 杨荣祥, 王万银, 蔡梦轲, 王丁丁, 罗新刚. 基于卫星重力异常的渤海盆地秦南凹陷及邻区构造格局研究[J]. 物探与化探, 2023, 47(3): 584-596.
[2] 王润生, 武斌, 张海瑞, 于嘉宾, 董彦龙, 郭国强, 康一鸣. 山东省临沂凸起东北缘重力场特征及大地构造单元边界讨论[J]. 物探与化探, 2023, 47(2): 279-289.
[3] 孙争, 王俊, 丁鹏, 谭鑫. 一种重力异常向上延拓高度最优化确定方法[J]. 物探与化探, 2023, 47(1): 162-170.
[4] 石泽玉, 张志厚, 刘鹏飞, 范祥泰. 重力及其梯度异常正演的Moving-footprint大尺度模型分解方法[J]. 物探与化探, 2022, 46(3): 576-584.
[5] 王蓉, 熊杰, 刘倩, 薛瑞洁. 基于深度神经网络的重力异常反演[J]. 物探与化探, 2022, 46(2): 451-458.
[6] 杨婧, 郭良辉. 重力异常曲化平的改进插值—迭代法[J]. 物探与化探, 2022, 46(1): 123-129.
[7] 高维强, 史朝洋, 张利明, 冯旭亮. 山区地形改正密度逐次回归选取方法[J]. 物探与化探, 2021, 45(6): 1530-1538.
[8] 王正科, 卢琳, 刘花婷. 一种实测重力异常区域场的消除方法[J]. 物探与化探, 2021, 45(6): 1569-1577.
[9] 陈青, 孙帅, 丁成艺, 黄小宇, 陈浩, 申鹏, 罗港, 魏耀聪. iTilt-Euler法在重力数据处理及断裂解释中的应用[J]. 物探与化探, 2021, 45(6): 1578-1587.
[10] 邢锦程, 袁炳强, 张春灌, 冯旭亮, 段瑞锋, 薛健, 贾洪杨, 李想. 特立尼达盆地重力场特征及油气远景[J]. 物探与化探, 2021, 45(6): 1606-1616.
[11] 孟军海, 马龙, 王金海, 赵丽萍, 王丽君, 付强, 童明慧. 重力数据在德令哈地区区域性综合解释中的开发应用研究[J]. 物探与化探, 2021, 45(2): 369-378.
[12] 王冠鑫, 罗锋, 周锡华, 闫方. 航空重力弱信号提取的卡尔曼滤波方法研究[J]. 物探与化探, 2021, 45(1): 76-83.
[13] 王祥, 郭良辉. 球坐标系密度界面反演方法及在华南大陆的应用[J]. 物探与化探, 2020, 44(5): 1161-1171.
[14] 王学发, 王万银, 马杰, 杨敏, 梁建设, 邱春光, 王丁丁, 纪晓琳, 刘金兰. 基于重力资料的马达加斯加岛及邻区盆地构造单元分布特征[J]. 物探与化探, 2020, 44(4): 928-937.
[15] 许文强, 袁炳强, 刘必良, 姚长利. 多种重磁位场边缘识别方法及在南黄海北部断裂构造识别中的应用研究[J]. 物探与化探, 2020, 44(4): 962-974.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com