Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1276-1282    DOI: 10.11720/wtyht.2022.1517
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于非均匀介质的谱比曲线正演技术及应用
刘铁华, 刘铁, 张邦, 卞友艳, 张占荣, 化希瑞
中铁第四勘察设计研究院有限公司,湖北 武汉 430063
Inhomogeneous media-based forward modeling technique of spectrum ratio curves and its application
LIU Tie-Hua, LIU Tie, ZHANG Bang, BIAN You-Yan, ZHANG Zhan-Rong, HUA Xi-Rui
China Railway Siyuan Survey and Design Group Co.,Ltd.,Wuhan 430063,China
全文: PDF(3095 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

微动勘探技术具有较强的空间适应能力和抗机械干扰能力,在复杂城市环境的地质勘探中被广泛应用。微动特征曲线的正演模拟均基于水平层状介质模型,而实际地层为典型非均匀地质模型,导致特征曲线拟合度不理想,有必要基于非均匀介质条件进行正演研究。水平层状介质假设的地质模型无法满足微动特征曲线的高精度正演要求,需基于非均匀模型进行正演。本文提出的动态优选法微动特征曲线正演技术,在等效水平层状介质理论特征曲线的基础上,计算随频率变化的孔径范围和优选系数,可实现非均匀介质的高精度特征曲线正演。以谱比曲线为例,采用动态优选法微动特征曲线正演技术能够更好地反演非均匀介质的横波分布,具有更高的横向分辨率和勘探精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘铁华
刘铁
张邦
卞友艳
张占荣
化希瑞
关键词 复杂城市环境频率域特征曲线非均匀介质微动技术动态优选法    
Abstract

The microtremor exploration technique has been widely used in the geological exploration of a complex urban environment due to its strong spatial adaptability and anti-mechanical interference ability.The forward modeling of microtremor characteristic curves is all based on a horizontally layered medium model,while actual strata are typical inhomogeneous geological models.The inconsistency leads to the unsatisfactory fitting degree of characteristic curves.Therefore,it is necessary to conduct forward modeling research based on the condition of inhomogeneous media.Since the geological model based on the assumption of horizontally layered media cannot meet the requirements for high-precision forward modeling of microtremor characteristic curves,forward modeling needs to be conducted using an inhomogeneous model.Based on the dynamic optimization method,this study proposed the forward modeling technique of microtremor characteristic curves to realize the forward modeling of high-precision characteristic curves of inhomogeneous media.In this technique,the aperture range and the optimization coefficients varying with frequency were calculated based on the theoretical characteristic curves of equivalent horizontally layered media.Taking spectral ratio curves as an example,the forward modeling technique of microtremor characteristic curves using the dynamic optimization method can obtain the shear wave distribution of inhomogeneous media through inversion,achieving higher lateral resolution and exploration precision.

Key wordscomplex urban environment    frequency-domain characteristic curve    inhomogeneous media    microtremor technique    dynamic optimization method
收稿日期: 2021-09-16      修回日期: 2022-07-22      出版日期: 2022-10-20
ZTFLH:  P631.4  
基金资助:湖北省重点研发计划项目“城市地下空间精细化探测与感知关键技术及装备”(2021BAA050);国家重点研发计划项目“城市地下空间精细探测技术与开发利用研究示范”课题一“城市地下空间开发地下全要素信息精准探测技术与装备”(2019YFC0605101)
作者简介: 刘铁华(1983-),男,高级工程师,主要从事工程地球物理勘探技术应用研究工作。
引用本文:   
刘铁华, 刘铁, 张邦, 卞友艳, 张占荣, 化希瑞. 基于非均匀介质的谱比曲线正演技术及应用[J]. 物探与化探, 2022, 46(5): 1276-1282.
LIU Tie-Hua, LIU Tie, ZHANG Bang, BIAN You-Yan, ZHANG Zhan-Rong, HUA Xi-Rui. Inhomogeneous media-based forward modeling technique of spectrum ratio curves and its application. Geophysical and Geochemical Exploration, 2022, 46(5): 1276-1282.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1517      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1276
Fig.1  层状介质模型示意
Fig.2  层状介质模型各阶理论频散曲线示意
Fig.3  实测谱比曲线示意
Fig.4  动态优选法原始示意
Fig.5  不同测点谱比曲线
Fig.6  C7测点综合谱比曲线
Fig.7  典型实测数据谱比曲线
a—水平段;b—单斜段
Fig.8  反演后的横波速度剖面成果
a—基于非均匀介质反演的横波速度剖面;b—基于水平水层层状介质反演的横波速度剖面
[1] Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin of Earthquake Research Institution, 1957, 35: 415-456.
[2] Toksöz M N, Lacoss R T. Microseisms: Mode structure and sources[J]. Science, 1968:159.
[3] 冉伟彦, 王振东. 长波微动法及其新进展[J]. 物探与化探, 1994, 18(1): 28-34.
[3] Ran W Y, Wang Z D. The long-wave microtremors method and its advances[J]. Geophysical and Geochemical Exploration, 1994, 18(1): 28-34.
[4] Haghshenas E, Bard P Y, Theodulidis N, et al. Empirical evaluation of microtremor H/V spectral ratio[J]. Bulletin of Earthquake Engineering, 2008, 6(1): 75-108.
doi: 10.1007/s10518-007-9058-x
[5] Arai H, Tokimatsu K. S-wave velocity profiling by inversion of microtremor H/V spectrum[J]. Bulletin of the Seismological Society of America, 2004, 94(1): 53-63.
doi: 10.1785/0120030028
[6] 刘铁华, 刘铁, 程光华, 等. 复杂城市环境下地球物理勘探技术研究进展[J]. 工程地球物理学报, 2020, 17(6):711-720.
[6] Liu T H, Liu Tie, Cheng G H, et al. Research progress of geophysical exploration technology in complex urban environment[J]. Chinese Journal of Engineering Geophysics, 2020, 17(6) :711-720.
[7] Rayleigh J W S. On waves propagated along the plane surface of an elastic solid[J]. Proceedings of the London Mathematical Society, 1885, 17: 4-11.
[8] Haskell N A. The dispersion of surface waves on multilayered[J]. Bulletin of the seismological Society America, 1953, 43(1): 17-34.
doi: 10.1785/BSSA0430010017
[9] Aki K, Richards P G. Quantitative Seismology: Theory and methods[M]. San Francisco: CA, 1980.
[10] 徐佩芬, 李传金, 凌甦群, 等. 利用微动勘察方法探测煤矿陷落柱[J]. 地球物理学报, 2009, 52(7):1923-1930.
[10] Xu P F, Li C J, Ling S Q, et al. Mapping collapsed columns in coal mines utilizing microtremor survey methods[J]. Chinese Journal of Geophysics, 2009, 52(7):1923-1930.
[11] 王伟君, 刘澜波, 陈棋福, 等. 应用微动H/V谱比法和台阵技术探测场地响应和浅层速度结构[J]. 地球物理学报, 2009, 52(6):1515-1525.
[11] Wang W J, Liu L B, Chen Q F, et al. Applications of microtremor H/V spectral ratio and array techniques in assessing the site effect and near surface velocity structure[J]. Chinese Journal of Geophysics, 2009, 52(6):1515-1525.
[12] 刘铁华. 综合微动技术在昆明地铁勘探中适用性的量化研究[J]. 工程地球物理学报, 2019, 16(5):572-579.
[12] Liu T H. Research and application of geological exploration methods in urban drilling blind area[J]. Chinese Journal of Engineering Geophysics, 2019, 16(5):572-579.
[13] 张明辉, 武振波, 马立雪, 等. 短周期密集台阵被动源地震探测技术研究进展[J]. 地球物理学进展, 2020, 35(2):495-511.
[13] Zhang M H, Wu Z B, Ma L X, et al. Research progress of passive source detection technology based on short-period dense seismic array[J]. Progress in Geophysics, 2020, 35(2):495-511.
[14] 刘铁华. 城市钻探盲区的地质勘探方法研究与应用[J]. 铁道工程学报, 2019, 36(10):88-93.
[14] Liu T H. Analysis and application of geological exploration methods in Urban drilling blind area[J]. Journal of Railway Engineering Society, 2019, 36(10):88-93.
[15] 刘伟, 黄韬, 王庭勇, 等. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[15] Liu W, Huang T, Wang T Y, et al. The application of integrated geophysical prospecting methods to the exploration of urban buried fault[J]. Geophysical and Geochemical Exploration, 2021, 45(4): 1077-1087.
[16] 董耀, 李光辉, 高鹏举, 等. 微动勘查技术在地热勘探中的应用[J]. 物探与化探, 2020, 44(6):1345-1351.
[16] Dong Y, Li G H, Gao P J, et al. The application of fretting exploration technology in the exploration of middle and deep clean energy[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1345-1351.
[17] Knopoff L. A matrix method for elastic wave problems[J]. Bulletin of the Seismological Society of America, 1964, 54(1):431-438.
doi: 10.1785/BSSA0540010431
[18] Abo-Zena A. Dispersion function computations for unlimited frequency values[J]. Geophysical Journal International, 1979, 58(1):91-105.
doi: 10.1111/j.1365-246X.1979.tb01011.x
[19] Chen X. A systematic and efficient method of computing normal modes for multilayered half-space[J]. Geophysical Journal International, 1993, 115(2):391-409.
doi: 10.1111/j.1365-246X.1993.tb01194.x
[20] 凡友华, 刘家琦, 肖柏勋. 计算瑞利波频散曲线的快速矢量传递算法[J]. 湖南大学学报:自然科学版, 2002(5):25-30.
[20] Fan Y H, Liu J Q, Xiao B X. Fast vector-transfer algorithm for computation of Rayleigh wave dispersion curves[J]. Journal of Hunan University:Natural Sciences Edition, 2002(5):25-30.
[21] Arai H, Tokimatsu K. S-wave velocity profiling by inversion of microtremor H/V spectrum[J]. Bulletin of the Seismological Society of America, 2004, 94(1): 53-63.
doi: 10.1785/0120030028
[22] 张立. 层状介质中瑞利面波波场特征分析和反演方法研究[D]. 成都: 西南交通大学, 2009.
[22] Zhang L. An Approach to the wave-field characteristic analysis and inversion algorithm of Rayleigh surface wave for layered medium[D]. Chengdu: Southwest Jiaotong University, 2009.
[1] 陈基炜, 赵东东, 宗全兵, 张宝松, 邸兵叶, 朱红兵, 王佳龙. 基于线形台阵的高精度微动技术在城区岩性地层精细划分中的应用[J]. 物探与化探, 2021, 45(2): 536-545.
[2] 任志平, 李貅, 戚志鹏, 赵威, 智庆全, 刘磊. 地面核磁共振三维响应影响因素[J]. 物探与化探, 2017, 41(1): 92-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com