Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (6): 1352-1360    DOI: 10.11720/wtyht.2020.1593
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
电阻率层析成像在沉积区隐伏断层探测中的应用
高武平1,2(), 闫成国2, 张文朋2, 王志胜2
1.中国地震局 地球物理研究所,北京 100081
2.天津市地震局,天津 300201
The application of high density electrical method to concealed fault detection in sedimentary plain
GAO Wu-Pin1,2(), YAN Cheng-Guo2, ZHANG Wen-Peng2, WANG Zhi-Sheng2
1. Institute of Geophysics, China Earthquake Administration, Beijing 100081, China
2. Tianjin Earthquake Administration,Tianjin 300201, China
全文: PDF(6277 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

电阻率层析成像是开展城市活动断层探测的方法之一。本文以天津蓟运河断裂探测为例,对电阻率层析成像在沉积区隐伏断裂探测中的应用进行了尝试。野外施工中采取了多项针对性措施,获得了较可靠的电阻率层析成像剖面;在详细分析测区钻孔资料的基础上进行剖面的地质解释,并与浅层人工地震结果进行了对比。探测结果显示,蓟运河断裂为一条第四系断裂并表现出一定的分段性,北段最浅上断点深达25 m,为一条晚更新世活动断层,南段为55 m左右,是一条中更新世中晚期断层。本次探测工作表明,利用电阻率层析成像在沉积区进行隐伏断层探测可以获得良好的效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高武平
闫成国
张文朋
王志胜
关键词 电阻率层析成像沉积平原隐伏断裂蓟运河断裂城市地质勘探    
Abstract

Resistivity tomography is a part of the methods for conducting fault detection in urban areas. In this paper, the application of resistivity tomography to the detection of concealed faults in sedimentary areas was attempted with the fault detection of the Tianjin Canal as an example. The Wenner symmetrical quadrupole device (Wenner α) was employed to data acquisition. In order to obtain higher quality raw data, the authors adopted a number of targeted measures in the field construction. Data processing and inversion adopted a wide range of engineering circles. Using the RES2DINV software, the authors obtained a more reliable resistivity tomography profile. In the geological interpretation of the section, detailed analysis was carried out based on borehole data of the survey area in comparison with the results of shallow artificial earthquakes. The results show that the Jiyunhe fault is a Quaternary fault and shows a definite segmentation. The shallowest upper fault point in the northern section is about 25 m deep, which is a late Pleistocene active fault, and the southern section is about 55 m,which is a middle late Pleistocene fault. This probing work shows that the use of resistivity tomography for the detection of concealed faults in the sedimentary area can achieve good results, but in the process of geological interpretation, the sedimentary evolutionary environment, the geological structure of the basement, and the conductive ion density of the formation should be closely combined with each other. The impact is particularly dependent on other detection results to ensure the harmonization of relevant consequences.

Key wordsresistivity tomography    sedimentary plain    concealed faults    Jiyunhe fault    urban geological exploration
收稿日期: 2019-12-02      出版日期: 2020-12-29
:  P631  
基金资助:国家自然科学基金项目(41772123);天津市科技重大专项工程(18ZXAQSF00110)
作者简介: 高武平(1981-),男,中国地震局地球物理研究所固体地球物理学博士在读,高级工程师,主要研究方向为城市活动断层探测、城市地震灾害风险评估、地震动数值模拟。Email:gwpp123@126.com
引用本文:   
高武平, 闫成国, 张文朋, 王志胜. 电阻率层析成像在沉积区隐伏断层探测中的应用[J]. 物探与化探, 2020, 44(6): 1352-1360.
GAO Wu-Pin, YAN Cheng-Guo, ZHANG Wen-Peng, WANG Zhi-Sheng. The application of high density electrical method to concealed fault detection in sedimentary plain. Geophysical and Geochemical Exploration, 2020, 44(6): 1352-1360.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1593      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I6/1352
Fig.1  研究区地震地质图与测线位置
Fig.2  测线JYH-1~JYH-3的反演电阻率剖面
Fig.3  测区典型钻孔钻孔柱状图与电阻率测井曲线
Fig.4  浅层人工地震17JYH-4测线时间剖面及电阻率层析成像剖面上断点投影位置
[1] 马志飞. 探测城市隐伏断层保障城市建设安全[J]. 城市与减灾, 2010,70(1):22-25.
[1] Ma Z F. Detect buried faults in cities, guarantee security of urban construction[J]. Cities and Disaster Reduction, 2010,70(1):22-25.
[2] 祁民, 张宝林, 梁光河, 等. 高分辨率预测地下复杂采空区的空间分布特征——高密度电法在山西阳泉某复杂采空区中的初步应用研究[J]. 地球物理学进展, 2006,21(1):256-262.
[2] Qi M, Zhang B L, Liang G H, et al. High-resolution prediction of space distribution characteristics of complicated underground cavities ——Preliminary application of high-density electrical technique in an area of Yangquan, Shanxi[J]. Progress in Geophysics, 2006,21(1):256-262.
[3] 姜早峰. 高密度电法CT成像技术在活断层探测中的应用[J]. 东北地震研究, 2004,20(1):40-43.
[3] Jiang Z F. Application of complex resist ivity ct tomography technology in act ive fault survey[J]. Seismological Research of Northeast China, 2004,20(1):40-43.
[4] 董浩斌. 高密度电法的发展与应用[J]. 地学前缘, 2003,10(1):171-176.
[4] Dong H B. Development and application of 2D resist ivity imaging surveys[J]. Earth Science Frontiers, 2003,10(1):171-176.
[5] 底青云, 石昆法, 王妙月, 等. CSAMT法和高密度电法探测地下水资源[J]. 地球物理学进展, 2001,16(3):54-58.
[5] Di Q Y, Shi K F, Wang M Y, et al. Water resources exploration with csamt and high density electric resistivity method[J]. Progress in Geophsics, 2001,16(3):54-58.
[6] 严加永, 孟贵祥, 吕庆田, 等. 高密度电法的进展与展望[J]. 物探和化探, 2012,36(4):576-583.
[6] Yan J Y, Meng G X, Lyu Q T, et al. The progress and prospect of the electrical resistivity imaging survey[J]. Geophysical & Geochemical Exploration, 2012,36(4):576-583.
[7] 葛鸣, 赵纯青, 刘景元. 电阻率层析成像在乌鲁木齐西山断裂探测中的应用[J]. 内陆地震, 2014,28(2):147-155.
[7] Ge M, Zhao C Q, Liu J Y. Application of high-density electrical method in xishan fault detection,Urumqi[J]. Inland Earthquake, 2014,28(2):147-155.
[8] 王爱国, 杨斌, 周俊喜. 安远盆地边缘断层电阻率层析成像探测及活动特征[J]. 地震研究, 2008,31(3):262-267.
[8] Wang A G, Yang B, Zhou J X. High-density resistivity surveying and the features of boundary fault along the edge of Anyuan basin[J]. Journal of Seismological Research, 2008,31(3):262-267.
[9] 侯治华, 钟南才, 郝彦军. 应用电阻率层析成像探测北京南口—孙河隐伏断裂[J]. 防灾科技学院学报, 2011,13(1):1-6.
[9] Hou Z H, Zhong N C, Hao Y J. Detecting Nankou-Sunhe Buried Faulty by High Density Resistivity Method[J]. Journal of Disaster-Prevention Science and Technology, 2011,13(1):1-6.
[10] 高武平, 陈宇坤, 张文朋, 等. 高密度电阻率法在西藏日喀则地区隐伏断裂探测中的应用[J]. 地震学报, 2016,38(5):776-783.
[10] Gao W P, Chen Y K, Zhang W P, et al. Application of high density resistivity method to exploring buriid faults in Xigaze region of Xizang[J]. Acta Seismologica Sinica, 2016,38(5):776-783.
[11] Rizzo E, Colella A, Lapenna V, et al. High-resolution Images of the fault-controlled High Agri valley basin (southern Italy) with deep and shallow electrical resistivity tomographies[J]. Physics and Chemistry of the Earth, 2004,29(4-9):321-327.
[12] Alexis M, et al. Shallow electrical resistivity imaging of the limón fault,Chagres river watershed,Panama Canal[J]. Journal of Applied Geophysics, 2017,138:135-142.
doi: 10.1016/j.jappgeo.2017.01.010
[13] 白登海, 王立凤, 孙洁, 等. 城市活断层探测中电磁噪音和环境干扰对浅层电磁方法的影响[J]. 地震地质, 2002,24(4):549-556.
[13] Bai D H, Wang L F, Sun J, et al. Effects of urban noise on electromagnetic methods[J]. Seismology and Geology, 2002,24(4):549-556.
[14] 朱涛, 何正勤, 冯锐, 等. 地震—电成像联合探测试验:以淄博市活断层探测为例[J]. 地震地质, 2007,29(2):373-380.
[14] Zhu T, He Z Q, Feng R, et al. Experiment on joint detection by seismic reflection and electrical imaging: With an example of exploration of active fault in Zibo city[J]. Seismology and Geology, 2007,29(2):373-380.
[15] 朱涛, 周建国, 沈坤, 等. 玉溪盆地内普渡河断裂的电阻率层析成像探测[J]. 地震地质, 2012,34(3):467-476.
[15] Zhu T, Zhou J G, Shen K, et al. Application of electrical resistivity tomography to the detection of Pudu river fault in Yuxi basin[J]. Seismology and Geology, 2012,34(3):467-476.
[16] 程邈, 傅焰林, 李振宇. 电阻率层析成像在查明潜伏断裂中的应用[J]. 工程地球物理学报, 2011,8(4):417-420.
[16] Cheng M, Fu Y L, Li Z Y. Application of high density resistivity method to hidden fault investigation[J]. Chinese Journal of Engineering Geophysics, 2011,8(4):417-420.
[17] 张斌, 朱涛, 周建国. 岩石电阻率图像及各向异性变化的实验研究[J]. 地震学报, 2017,39(4):478-494.
[17] Zhang B, Zhu T, Zhou J G. Experimental studies on the changes of rock resistivity image and anisotropy[J]. Acta Seismologica Sinica, 2017,39(4):478-494.
[18] 徐杰, 宋长青, 楚全芝. 张家口-蓬莱断裂带地震构造特征的初步探讨[J]. 地震地质, 1998,20(2):146-154.
[18] Xu J, Song C Q, Chu Q Z, Preliminary study on the seismotectonic characters of the Zhangjiakou-Penglai fault zone[J]. Seismology and Geology, 1998,20(2):146-154.
[19] 虢顺民, 李志义, 程绍平, 等. 唐山地震区域构造背景和发震模式的讨论[J]. 地质科学, 1977,12(4):305-321.
[19] Guo S M, Li Z Y, Cheng S P, et al. Discussion on the regional structural background and the seismogenic model of the Tangshan earthquake[J]. Scientia Geologica Sinica, 1977,12(4):305-321.
[20] 杨锦贤. 天津平原软土层分布规律及工程地质层划分[J]. 天津大学学报, 1991(s):126-131.
[20] Yang J X. Distribution patterns of soft soil layers and the classification of engineering geology layers in tianjin plain[J]. Journal of Tianjin University, 1991(s):126-131.
[21] 张俊红. 天津软土地区工程抗震设计中应注意的问题[J]. 岩土工程界, 2008,11(11):74-76.
[21] Zhang J H. Problems needing attention in ASEISMIC design of engineering in Tianjin soft soil area[J]. Geotechnical Engineering World, 2008,11(11):74-76.
[22] 何正勤, 陈宇坤, 叶太兰, 等. 浅层地震勘探在沿海地区隐伏断层探测中的应用[J]. 地震地质, 2007,29(2):363-372.
[22] He Z Q, Chen Y K, Ye T L, et al. Application of shallow seismic exploration in detection of buried fault in coastal areas[J]. Seismology and Geology, 2007,29(2):363-372.
[23] 张四昌, 刁桂苓. 唐山地震序列的构造过程[J]. 中国地震, 1992,8(2):73-80.
[23] Zhang S C, Diao G L. The tectonic process of the Tangshan earthquake sequence[J]. Earthquake Research in China, 1992,8(2):73-80.
[24] 陈宇坤, 李振海, 邵永新, 等. 天津地区第四纪年代地层剖面研究[J]. 地震地质, 2008,30(2):383-399.
[24] Chen Y K, Li Z H, Shao Y X, et al. Study on the quaternary chrono stratgraphic section in Tanjin area[J]. Seismology and Geology, 2008,30(2):383-399.
[25] 袁海峰, 王伟. 高密度电法在冻土地区查找基岩面中的应用[J]. 陕西建筑, 2014,225:43-45.
[25] Yuan H F, Wang W. Application of high density resistivity method in finding bedrock surface in frozen soil area[J]. Shaanxi Architecture, 2014,225:43-45.
[26] 梁光河. 小心陷阱!电阻率层析成像勘探要避开这些“误区”![OL]. http://www.vccoo.com/v/d8f7e8.2016.
[26] Liang G H. Watch out for the traps! These “mistakes” should be avoided in resistivity tomography exploration! [OL]. http://www.vccoo.com/v/d8f7e8.2016.
[27] 王强, 李从先. 中国东部沿海平原第四系层序类型[J]. 海洋地质与第四纪地质, 2009,29(4):1-7.
[27] Wang Q, Li C X. The type of quaternary sequence in the east china coastal plain[J]. Marine Geology & Quaternary Geology, 2009,29(4):1-7.
[28] 郑文俊. 天津地区咸水层底界埋深与地质构造关系[J]. 地震学刊, 1989(4):144-147.
[28] Zheng W J. Relationship between burial depth of brackish water layer and geological structure in Tianjin area[J]. Journal of Seismology, 1989(4):144-147.
[29] 刘青勇, 董广清. 电阻率法在防治莱州湾地区海水入侵中的应用[J]. 物探与化探, 1999,23(5):368-372.
[29] Liu Q Y, Dong G Q. The application of resistivity technique to the prevention of seawater encroachment in Laizhou bay area[J]. Geophysical and Geochemical Exploration, 1999,23(5):368-372.
[30] 陈宇坤, 赵国敏, 闫成国, 等. 天津市活动断层探测与地震危险性评价[M]. 北京:科学出版社, 2013: 139-168.
[30] Chen Y K, Zhao G M, Yan C G, et al. Active fault detection and seismic risk assessment in Tianjin[M]. Science Press Beijing China, 2013: 139-168.
[31] 周锡明, 陈超, 王佩业. 电阻率层析成像在山区浅表层结构调查中的应用[J]. 物探与化探, 2012,36(2):198-201.
[31] Zhou X M, Chen C, Wang P Y. The application of the high density resistivity method to the investigation of shallow layer structure in the mountain area[J]. Geophysical and Geochemical Exploration, 2012,36(2):198-201.
[32] 朱涛, 周建国, 冯锐. 电成像方法在淄博市活断层探测中的应用[J]. 物探与化探, 2008,32(1):87-95.
[32] Zhu T, Zhou J G, Feng R, et al. The application of the electric imaging method to the detection of active faults in Zibo city[J]. Geophysical and Geochemical Exploration, 2008,32(1):87-95.
[33] 周蜜, 王建国, 黄松波, 等. 土壤电阻率测量影响因素的试验研究[J]. 岩土力学, 2011,32(11):3269-3275.
[33] Zhou M, Wang J G, Huang S B, et al. Experimental investigation on influencing factors in soil resistivity measurement[J]. Rock and Soil Mechanics, 2011,32(11):3269-3275.
[34] 林志平, 林俊宏, 吴柏林, 等. 浅地表地球物理技术在岩土工程中的应用与挑战[J]. 地球物理学报, 2015,58(8):2664-2680.
[34] Lin Z P, Lin J H, Wu B L, et al. Applications and challenges of near surface geophysics in geotechnical engineering[J]. Chinese Journal of Geophysics, 2015,58(8):2664-2680.
[35] 郑冰, 李柳德. 电阻率层析成像不同装置的探测效果对比[J]. 工程地球物理学报, 2015,12(1):33-39.
[35] Zheng B, Li L D. Comparison of detection effects of different electrical resistivity tomography devices[J]. Engineering Geophysics, 2015,12(1):33-39.
[36] 马志飞, 刘鸿福, 叶章, 等. 高密度电法不同装置的勘探效果对比[J]. 物探装备, 2009,19(1):53-55,67.
[36] Ma Z F, Liu H F, Ye Z, et al. Comparison of exploration effects of different devices in high-density resistivity method[J]. Geophysical Equipment, 2009,19(1):53-55,67.
[1] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[2] 杨利普, 徐志萍, 徐顺强, 刘明军, 姜磊, 熊伟, 贺为民. 薄壁断裂峪河口至方庄段电性结构特征[J]. 物探与化探, 2020, 44(6): 1301-1305.
[3] 刘明辉, 薛建, 王者江, 王元新, 申文斌. 工程场地隐伏断裂的探测与地震活动性评价[J]. 物探与化探, 2018, 42(4): 839-845.
[4] 张倩, 王玲, 江沸菠. 电阻率层析成像的二维改进粒子群优化算法反演[J]. 物探与化探, 2015, 39(5): 1047-1052.
[5] 智云宝, 郭瑞朋, 王瑞刚, 王英鹏, 郑伟军, 马瑜宏. 综合物探方法在焦家断裂带南延中的应用[J]. 物探与化探, 2014, 38(6): 1176-1180.
[6] 常志勇, 史杰, 李清海, 赵海斌, 周晓燕. 土壤氡测量技术在新疆塔什库尔干县地热资源勘查中的应用[J]. 物探与化探, 2014, 38(4): 654-659.
[7] 曾敏, 董好刚, 陈长敬, 刘凤梅. 综合物化探方法探测沙湾隐伏断裂带中段[J]. 物探与化探, 2013, 37(4): 580-584.
[8] 冯军, 李红光, 吴涛, 玄月, 李伟华. 河北隆尧隐伏断裂地球化学探测[J]. 物探与化探, 2011, 35(5): 597-599.
[9] 周四春, 刘晓辉, 谷江波, 吕少辉, 王自运, 吴丽荣. 联袂应用地气、射气与壤中α测量探测雅拉河地区隐伏断裂[J]. 物探与化探, 2011, 35(3): 298-302.
[10] 张晓永, 彭润民, 张林, 义爱文, 赵天平, 刘爱民. 滇西南大麦地矿区隐伏断裂特征及其控矿规律[J]. 物探与化探, 2011, 35(2): 155-159.
[11] 刘晓辉 童纯菡. 河床地区地气测量找隐伏断裂[J]. 物探与化探, 2009, 33(2): 128-131.
[12] 赵琦, 陈桐军, 沈前斌, 李雁龙. 涪陵、万州隐伏断裂的物化探异常特征[J]. 物探与化探, 2008, 32(3): 247-251.
[13] 朱涛, 周建国, 冯锐, 郝锦绮, 王华林, 王硕卿. 电成像方法在淄博市活断层探测中的应用[J]. 物探与化探, 2008, 32(1): 87-91,95.
[14] 杨守渠, 孙天立, 邹乾胜, 毕炳坤, 乔刚, 施强, 杨平太. 洛阳市龙门同一隐伏断裂构造上热水、凉水井勘探[J]. 物探与化探, 2005, 29(4): 326-328.
[15] 金仰芬, 伍宗华. 气体测量在引黄工程勘查中的应用[J]. 物探与化探, 1996, 20(3): 173-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com