Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (3): 607-614    DOI: 10.11720/wtyht.2020.1297
     生态环境调查 本期目录 | 过刊浏览 | 高级检索 |
恩施地区土壤与农作物硒镉地球化学特征
唐世琪1,2,3, 万能4, 曾明中4, 杨柯1,2,3, 刘飞1,2,3, 彭敏1,2,3, 李括1,2,3, 杨峥1,2,3
1. 中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
2. 中国地质调查局 土地质量地球化学调查评价研究中心,河北 廊坊 065000
3. 中国地质科学院 地球表层碳—汞地球化学循环重点实验室,河北 廊坊 065000
4. 湖北省地质调查院,湖北 武汉 430034
Geochemical characteristics of selenium and cadmium in soil and crops in Enshi area
Shi-Qi TANG1,2,3, Neng WAN4, Ming-Zhong ZENG4, Ke YANG1,2,3, Fei LIU1,2,3, Min PENG1,2,3, Kuo LI1,2,3, Zheng YANG1,2,3
1. Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences,Langfang 065000,China
2. Research Center of Geochemical Survey and Assessment on Land Quality,China Geological Survey,Langfang 065000,China
3. Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone,Chinese Academy of Geological Sciences,Langfang 065000,China
4. Hubei Geological Survey,Wuhan 430034, China
全文: PDF(3321 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

恩施州已开展的1:25万土地地球化学调查结果显示,恩施地区表层土壤中硒含量丰富,但镉含量同样较高。笔者以该地区3 950件表层土壤及362件作物硒、镉等含量指标为基础,讨论了硒、镉元素地球化学特征,共生成因以及不同种类作物对两种元素的吸收富集能力。结果表明,土壤中硒、镉呈伴生关系,含量分布主要受控于该地区二叠系发育的黑色岩系成土母质,赋存状态与土壤中的有机质和硫化物密切相关。不同作物生物富集系数对比结果显示,银杏、玉米和茶叶对硒的吸收能力高于镉,可作为恩施地区富硒农产品开发的优选作物,同时还应考虑土壤的pH值,中碱性土壤农产品镉富集风险较低。此外,硒对于镉有解毒作用,高硒环境将会显著降低镉对人体的健康风险。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐世琪
万能
曾明中
杨柯
刘飞
彭敏
李括
杨峥
关键词 恩施表层土壤地球化学特征生物富集健康效应    
Abstract

The 1:25 million land geochemical survey conducted in Enshi area shows that the surface soil in Enshi area is rich in selenium, and the content of cadmium is also high. Based on the data of 3 950 surface soil samples and 362 crop samples in this area, the geochemical characteristics of selenium and cadmium, co-generation factors, and the capability of different types of crops for absorbing and enriching the two elements are discussed.The results show that the selenium and cadmium in the surface soil of Enshi area is associated with each other. The distribution of the two elements is mainly controlled by the Permian soil parent material, and the occurrence of selenium and cadmium is closely related to organic matter and sulfide in soil. Comparison of BCF of selenium and cadmium in different crops shows that ginkgo, corn and tea have higher absorption capacity for selenium than for cadmium, and hence these crops could be used as the preferred crops for the development of selenium-enriched agricultural products in Enshi area. At the same time, the pH of the soil should also be considered. The medium alkaline soil may be more likely to avoid the risk of cadmium enrichment in agricultural products. In addition, selenium has a detoxifying effect on cadmium. Selenium-rich environment will significantly reduce the harm of cadmium to human body.

Key wordsEnshi    surface soil    selenium    cadmium    geochemical characteristics    bioaccumulation    health effect
收稿日期: 2019-05-27      出版日期: 2020-06-24
:  P632  
基金资助:中国地质调查局项目“粤桂湘鄂1:25万土地质量地球化学调查”(12120114062801);“全国土地质量地球化学调查成果集成与服务应用”(DD20190518)
作者简介: 唐世琪(1991-),女,硕士研究生,研究方向为环境地球化学。Email: 642191779@qq.com
引用本文:   
唐世琪, 万能, 曾明中, 杨柯, 刘飞, 彭敏, 李括, 杨峥. 恩施地区土壤与农作物硒镉地球化学特征[J]. 物探与化探, 2020, 44(3): 607-614.
Shi-Qi TANG, Neng WAN, Ming-Zhong ZENG, Ke YANG, Fei LIU, Min PENG, Kuo LI, Zheng YANG. Geochemical characteristics of selenium and cadmium in soil and crops in Enshi area. Geophysical and Geochemical Exploration, 2020, 44(3): 607-614.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1297      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I3/607
Fig.1  研究区地层分布
Se判断标准[16] 恩施地区 Cd判断标准[17] 恩施地区
w(Se)/10-6 效应 面积/km2 比例/% w(Cd)/10-6 效应 面积/km2 比例/%
≤0.125 硒不足 13.07 0.08 pH≤7.5 ≤0.30 无风险 2101.58 12.86
0.125~0.175 潜在硒不足 62.10 0.38 >0.30 有风险 12410.89 75.95
0.175~0.40 足硒 5737.33 35.11
0.40~3 富硒 10110.18 61.87 pH>7.5 ≤0.60 无风险 1249.36 7.65
>3 硒中毒 418.33 2.56 >0.60 有风险 579.17 3.54
Table 1  研究区土壤硒、镉判断标准及结果
Fig.2  研究区表层土壤硒、镉分布及其与二叠系地层的空间关系
地质单元 第四系 白垩系 侏罗系 三叠系 二叠系 石炭系 泥盆系 志留系 奥陶系 寒武系
样本数 24 60 12 1861 590 37 119 461 436 276
Se 0.73 0.45 0.33 0.62 1.39 0.98 0.79 0.64 0.48 0.51
Cd 0.54 0.37 0.29 0.70 1.53 1.09 0.75 0.61 0.44 0.54
Table 2  研究区不同地质单元土壤硒、镉平均含量统计10-6
Fig.3  土壤中不同元素相关关系
作物类别 样品数 平均值/10-6 含量范围/10-6
Se Cd w(Se)/w(Cd) Se Cd
早稻 18 0.078 0.236 0.331 0.028~0.156 0.005~0.826
玉米 120 0.475 0.156 3.045 0.018~7.421 0.002~2.644
红薯 38 0.020 0.056 0.357 0.002~0.084 0.002~0.645
辣椒 60 0.542 0.992 0.546 0.020~6.683 0.129~4.954
土豆 70 0.020 0.037 0.541 0.002~0.284 0.000~0.142
大蒜 20 0.066 0.449 0.147 0.034~0.272 0.059~2.501
茶叶 16 0.091 0.032 2.844 0.044~0.202 0.013~0.075
银杏 20 0.698 0.012 58.167 0.020~12.670 0.006~0.025
Table 3  不同作物中硒、镉元素含量特征
Fig.4  研究区不同作物硒、镉生物富集系数对比
Fig.5  不同pH区间玉米籽实硒、镉生物富集系数对比
[1] Rayman M P. The importance of selenium to human health[J]. Lancet, 2000,356(9225):233-241.
pmid: 10963212
[2] Rotruck J T, Pope A L, Ganther H E, et al. Selenium: Biochemicalrole as a component of glutathione peroxidase[J]. Science, 1973,79(4073):88-90.
[3] 杨礼茂. 鄂西南地区硒资源及其综合开发[J]. 地域研究与开发, 1998,7(4):72-76.
[3] Yang L M. Selenium resources and its comprehensive exploitation in the southwestern Hubei[J]. Areal Research and Development, 1998,7(4):72-76.
[4] 杜丽娜, 余若祯, 王海燕, 等. 重金属镉污染及其毒性研究进展[J]. 环境与健康杂志, 2013,30(2):167-173.
[4] Du L N, Yu R Z, Wang H Y, et al. Research progress on heavy metal cadmium pollution and its toxicity[J]. Journal of environment and health, 2013,30(2):167-173.
[5] 崔岩山, 陈晓晨. 土壤中镉的生物可给性及其对人体的健康风险评估[J]. 环境科学, 2010,32(2):403-408.
[5] Cui Y S, Chen X C. Bioavailability of soil cadmium and its health risk assessment[J]. Environmental science, 2010,32(2):403-408.
[6] Zhu J M, Zheng B S. Distribution of selenium in a mini-landscape of Yutangba, Enshi, Hubei Province, China[J]. Applied Geochemistry, 2001,16(11-12):1333-1344.
doi: 10.1016/S0883-2927(01)00047-6
[7] Chang C Y, Yin R S, Wang X, et al. Selenium translocation in the soil-rice system in the Enshi seleniferous area, Central China[J]. Science of the Total Environment, 2019,669:83-90.
pmid: 30878943
[8] Zhu J M, Han W L, Lei L, et al. Selenium speciation of Se-rich rocks from Yutangba of Enshi, China[J]. Goldschmidt Conference Abstracts, 2006,70(18):754.
[9] 杨良策, 李明龙, 杨廷安, 等. 湖北省恩施市表层土壤硒含量分布特征及其影响因素研究[J]. 资源环境与工程, 2015,29(6):825-829.
[9] Yang L C, Li M L, Yang T A, et al. Study on distribution characteristics of selenium content of surface soil and its influencing factors in Enshi city,Hubei province[J]. Resources Environment & Engineering, 2015,29(6):825-829.
[10] 郭宇, 鲍征宇, 马真真, 等. 湖北恩施地区土壤—植物系统中Se元素的地球化学特征[J]. 地质通报, 2012,31(1):151-155.
[10] Guo Y, Bao Z Y, Ma Z Z, et al. Geochemical characteristics of selenium in the soil-plants system of Enshi area, Hubei Province[J]. Geological Bulletin of China, 2012,31(1):151-155.
[11] 朱建明, 左维, 秦海波, 等. 恩施硒中毒区土壤高硒的成因:自然硒的证据[J]. 矿物学报, 2008,28(4):397-400.
[11] Zhu J M, Zuo W, Qin H B, et al. An investigation on the source of soil Se in Yutangba Enshi: evidence from natural selenium[J]. Acta Mineralogica Sinica, 2008,28(4):397-400.
[12] Zhu J M, Zuo W, Liang X B, et al. Occurrence of native selenium in Yutangba and its environmental implications[J]. Applied Geochemistry, 2004,19:461-467.
[13] 袁知洋, 项剑桥, 吴冬妹, 等. 恩施富硒土壤区主要农作物硒镉特征以及和根系土硒镉关系研究[J]. 资源环境与工程, 2017,31(6):706-712.
[13] Yuan Z Y, Xiang J Q, Wu D M, et al. The characteristics of selenium and cadmium in crops and its root soil in the area of Se and Cd-enriched soil in Enshi[J]. Resources Environment & Engineering, 2017,31(6):706-712.
[14] 张光弟, 葛晓立, 张绮玲, 等. 湖北恩施地区硒地质地球化学环境背景[J]. 地球学报, 1998(1):59-67.
[14] Zhang G D, Ge X L, Zhang Q L, et al. Selenium geological and geochemical environmental background in Enshi,Hubei[J]. Acta Geoscientia Sinica, 1998(1):59-67.
[15] 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
[15] Chinese soil element background value[M]. Beijing: China Environmental Science Press, 1990.
[16] 谭见安. 中华人民共和国地方病与环境图集[M]. 北京: 科学出版社, 1989.
[16] Tan J A. Atlas of local diseases and environment of China[M]. Beijing: Science Press, 1989.
[17] 中华人民共和国生态环境部. GB 15618-2018 土壤环境质量农用地土壤污染风险筛选值(试行)[S]. 2018.
[17] Ministry of Ecology and Environment of the People’s Republic of China. GB 15618-2018 Soil environmental quality screening value of soil pollution tisk for agricultural land (trial)[S]. 2018.
[18] Qin H B, Zhu J M, Su H. Selenium fractions in organic matter from Se-rich soils and weathered stone coal in selenosis areas of China[J]. Chemosphere, 2012(86):626-633.
[19] 朱建明. 渔塘坝黑色富硒岩石中硒的赋存状态及其对局域环境的效应研究[D]. 贵阳:中国科学院地球化学研究所, 2001.
[19] Zhu J M. Occurrence of selenium in black selenium-enriched rock in Yutangba and its effect on local environment[D]. Guiyang: Institute of Geochemistry,Chinese Academy of Sciences, 2001.
[20] 朱建明, 秦海波, 李璐, 等. 湖北恩施渔塘坝高硒土壤中硒的结合态[J]. 环境科学学报, 2008,28(4):772-777.
[20] Zhu J M, Qin H B, Li L, et al. Fractionation of selenium in high-Se soils from Yutangba, Enshi, Hubei[J]. Acta Scientiae Circumstantiae, 2008,28(4):772-777.
[21] 王芳, 鲁力, 康健, 等. 恩施渔塘坝硒矿床中硒的赋存状态研究[J]. 资源环境与工程, 2016,30(2):244-247.
[21] Wang F, Lu L, Kang J, et al. Study on the Occurrence of Selenium in Yutangba of Enshi[J]. Resources Environment & Engineering, 2016,30(2):244-247.
[22] Li Z, Liang D L, Peng Q, et al. Interaction between selemium and soil organic matter and its impact on soil selenium bioavailability:A review[J]. Geoderma, 2017,295:69-79.
[23] 韩文亮, 朱建明, 秦海波, 等. 恩施渔塘坝富硒碳质岩石中硒的形态分析[J]. 矿物学报, 2007,27(1):89-95.
[23] Han W L, Zhu J M, Qin H B, et al. Selenium Speciation in Se-rich Rocks at Yutangba[J]. Acta Mineralogica Sinica, 2007,27(1):89-95.
[24] Cary E E, Gissel-Nielsen G. Effect of fertilizer anions on the solubility of native and applied selenium in soil[J]. Soil Science Society of America Journal, 1973,37(4):187-190.
[25] 杨忠芳, 余涛, 侯青叶, 等. 海南岛农田土壤Se的地球化学特征[J]. 现代地质, 2012,26(5):837-849.
[25] Yang Z F, Yu T, Hou Q Y, et al. Geochemical characteristics of soil selenium in farmland of Hainan island[J]. Geoscience, 2012,26(5):837-849.
[26] 王月平, 张立, 崔玉军, 等. 宝清县东部土壤硒含量特征及其与土壤性质的关系[J]. 物探与化探, 2019,43(4):904-911.
[26] Wang Y P, Zhang L, Cui Y J, et al. Characteristics of selenium content in soil of eastern Baoqing County and its relationship with soil properties[J]. Geophysical and Geochemical Exploration, 2019,43(4):904-911.
[27] 杨忠芳, 陈岳龙, 钱鑂, 等. 土壤pH对镉存在形态影响的模拟实验研究[J]. 地学前缘, 2005,12(1):252-260.
[27] Yang Z F, Chen Y L, Qian X, et al. A study of the effect of soil pH on chemical species of cadmium by simulated experiments. Earth Science Frontiers, 2005,12(1):252-260.
[28] 张亚峰, 苗国文, 马强, 等. 青海东部碱性土壤中硒的形态特征[J]. 物探与化探, 2019,43(5):1138-1144.
[28] Zhang Y F, Miao G W, Ma Q, et al. Distribution characteristics of Se speciation of alkaline soil in eastern Qinghai[J]. Geophysical and Geochemical Exploration, 2019,43(5):1138-1144.
[29] 毛大均, 郑宝山, 严文祥. 鄂西南石煤和石煤出露区土壤中硒与镉的含量[J]. 湖北预防医学杂志, 1999,10(2):1-2.
[29] Mao D J, Zheng B S, Yan W X. Contents of selenium and cadmium in soils of coal in the south of Hubei Province[J]. Hubei Journal of Preventive Medicine, 1999,10(2):1-2.
[30] 牛静萍. 29对金属化合物对大白鼠游离肝细胞联合毒性的研究[J]. 环境与健康杂志, 1995,12(2):55-56.
[30] Niu L P. Study on the combined toxicity of 29 pairs of metal compounds on free hepatocytes in rats[J]. Journal of environment and health, 1995,12(2):55-56.
[31] 杨忠芳. 湘鄂重金属高背景区1:5万土地质量地球化学调查与风险评价二级项目成果报告[R]. 中国地质大学(北京) 2019.
[31] Yang Z F. Achievement report of the second project of 1∶50,000 land quality geochemical survey and risk assessment in the heavy metal high background area of Hunan and Hubei[R]. China University of Geosciences(Beijing) 2019.
[32] 杨克敌. 微量元素与健康[M]. 北京: 科学出版社, 2003.
[32] Yang K D. Trace elements and health[M]. Beijing: Science Press, 2003.
[33] 宋明义, 岑静, 胡艳华, 等. 高镉地质环境富硒土壤特征及其生态效应[J]. 地球与环境, 2012,40(3):354-360.
[33] Study on the characteristics of selenium-rich soil geological environment with high contents of cadmium and its ecological effects[J]. Earth and environment, 2012,40(3):354-360.
[1] 王志强, 杨建锋, 魏丽馨, 石天池, 曹园园. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237.
[2] 张春来, 杨慧, 黄芬, 曹建华. 广西马山县岩溶区土壤硒含量分布及影响因素研究[J]. 物探与化探, 2021, 45(6): 1497-1503.
[3] 刘道荣, 焦森. 天然富硒土壤成因分类研究及开发适宜性评价[J]. 物探与化探, 2021, 45(5): 1157-1163.
[4] 徐云峰, 郝雪峰, 秦宇龙, 王显锋, 熊昌利, 李名则, 武文辉, 詹涵钰. 四川岔河地区水系沉积物地球化学特征及找矿方向[J]. 物探与化探, 2021, 45(3): 624-638.
[5] 吴兴盛. 福建省武平县富硒土壤特征及成因分析[J]. 物探与化探, 2021, 45(3): 778-784.
[6] 李欢, 黄勇, 张沁瑞, 贾三满, 徐国志, 冶北北, 韩冰. 北京平原区土壤地球化学特征及影响因素分析[J]. 物探与化探, 2021, 45(2): 502-516.
[7] 吴松, 陈政, 李元彬, 黄钊, 张林, 许胜超, 王开贵. 云南省者竜—嘎洒地区Cr、Ni地球化学特征及土壤污染风险防控建议[J]. 物探与化探, 2021, 45(2): 517-527.
[8] 陶春军, 史春鸿, 张笑蓉, 管后春, 贾十军. 淮北平原覆盖区土壤采样密度及其环境质量研究——以1∶5万高炉集幅为例[J]. 物探与化探, 2021, 45(1): 200-206.
[9] 韩伟, 王乔林, 宋云涛, 彭敏, 王成文. 四川省沐川县北部土壤硒地球化学特征与成因探讨[J]. 物探与化探, 2021, 45(1): 215-222.
[10] 牛雪, 何锦, 庞雅婕, 明圆圆. 三江平原西部土壤硒分布特征及其影响因素[J]. 物探与化探, 2021, 45(1): 223-229.
[11] 乔新星, 晁旭, 任蕊, 张继军, 胡奎, 李傲瑞, 张志敏. 陕西关中富硒土壤研究及开发利用——以三原—阎良地区为例[J]. 物探与化探, 2021, 45(1): 230-238.
[12] 赵秀芳, 张永帅, 冯爱平, 王艺璇, 夏立献, 王宏雷, 杜伟. 山东省安丘地区农业土壤重金属元素地球化学特征及环境评价[J]. 物探与化探, 2020, 44(6): 1446-1454.
[13] 田建民, 徐争启, 尹明辉, 李涛, 孙康. 临沧地区富铀花岗岩体地球化学特征及其地质意义[J]. 物探与化探, 2020, 44(5): 1103-1115.
[14] 王小高, 王英超, 程宝成, 杨永千, 王杰, 陈鹏. 河南省西簧钒矿岩石地球化学特征及矿床成因[J]. 物探与化探, 2020, 44(5): 1116-1124.
[15] 刘道荣, 周漪. 浙西水田土壤镉形态与有效性研究[J]. 物探与化探, 2020, 44(5): 1239-1244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com