Please wait a minute...
E-mail Alert Rss
 
物探与化探  2016, Vol. 40 Issue (3): 550-556,560    DOI: 10.11720/wtyht.2016.3.17
  方法技术研究 本期目录 | 过刊浏览 | 高级检索 |
分形(多重分形)在区域化探数据处理中的应用——以柴北缘荒漠戈壁景观区为例
刘世宝1, 陈鑫2, 国显正3, 王会敏2, 郑有业2,3, 许荣科3, 王红军2
1. 青海省地质调查局, 青海 西宁 810001;
2. 中国地质大学(武汉) 资源学院, 湖北 武汉 430074;
3. 中国地质大学(武汉) 地质调查研究院, 湖北 武汉 430074
Fractal/multifractal modeling of geochemical exploration data in desert landscape area of Qaidam Basin
LIU Shi-Bao1, CHEN Xin2, GUO Xian-Zheng3, WANG Hui-Min2, ZHENG You-Ye2,3, XU Rong-Ke3, WANG Hong-Jun2
1. Qinghai Geological Survey, Xining 810001, China;
2. Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China;
3. Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China
全文: PDF(9593 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

通过搜集柴北缘1:20万区域地球化学数据,运用分形(多重分形)方法来确定荒漠戈壁景观区受风成沙影响的地球化学异常特征,并利用C-A和S-A模型分别探讨了景观地区Au的地球化学异常特征。研究表明,C-A模型在确定异常下限时有优势,但也存在局限性;S-A模型能够很好地排除背景场和干扰因素,缩小异常面积,突出弱小异常。基于该方法提取的异常元素区域能够较好地识别出绝大多数已知矿床,同时指示了值得作进一步异常查证的空白成矿元素异常区域,为勘查工作提供参考,值得开展下一步的找矿工作。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

On the basis of previous work, the authors collected 1:200 000 regional geochemical data along the northern margin of Qaidam Basin,used fractal (multifractal) method to determine geochemical anomaly characteristics in Gobi desert area of eolian sand, and adopted the C-A and S-A model to investigate the characteristics of geochemical anomaly of Au element influenced by eolian sand in the Gobi desert area. The results show that C-A model has advantages in determining the threshold but still has some limitations. S-A model can well eliminate the background field and interference factors, reduce the area of anomaly, and can make prominent the small weak anomaly. The method of extracting the region of anomalous elements can be used to identify the vast majority of known ore deposits and indicate the further anomal anomaly area of ore-forming elements based on the geochemical data, thus providing a reference for further exploration.

收稿日期: 2015-05-07      出版日期: 2016-06-10
:  P632  
基金资助:

中国地质调查局项目(1212011121204)

通讯作者: 郑有业(1962-),男,教授,博士生导师,主要从事基础地质、成矿规律及矿产勘查评价工作。E-mail:zhyouye@163.com
作者简介: 刘世宝(1965-),男,高级工程师,主要从事地质矿产勘查工作。E-mail:843594591@qq.com
引用本文:   
刘世宝, 陈鑫, 国显正, 王会敏, 郑有业, 许荣科, 王红军. 分形(多重分形)在区域化探数据处理中的应用——以柴北缘荒漠戈壁景观区为例[J]. 物探与化探, 2016, 40(3): 550-556,560.
LIU Shi-Bao, CHEN Xin, GUO Xian-Zheng, WANG Hui-Min, ZHENG You-Ye, XU Rong-Ke, WANG Hong-Jun. Fractal/multifractal modeling of geochemical exploration data in desert landscape area of Qaidam Basin. Geophysical and Geochemical Exploration, 2016, 40(3): 550-556,560.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2016.3.17      或      https://www.wutanyuhuatan.com/CN/Y2016/V40/I3/550

[1] Cheng Q, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 1994, 51(2): 109-130.
[2] Zuo R. Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China[J]. Journal of Geochemical Exploration, 2014, 139(1): 170-176.
[3] Nouri R. Correlation between Cu mineralization and major faults using multifractal modelling in the Tarom area (NW Iran)[J].Geologica Carpathica, 2013, 64(5):409-416.
[4] Zhao J, Chen S, Zuo R. Identifying geochemical anomalies associated with Au-Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China[J].Journal of Geochemical Exploration, 2015, 164:54-64.
[5] Cheng Q, Xu Y, Grunsky E. Integrated Spatial and Spectrum Method for Geochemical Anomaly Separation[J]. Natural Resources Research, 2000, 9(1): 43-52.
[6] 张立. 基于核主成分分析和多重分形的地球化学综合异常信息提取[D].成都:成都理工大学, 2014.
[7] Zuo R, Carranza E J M, Cheng Q. Fractal/multifractal modelling of geochemical exploration data[J]. Journal of Geochemical Exploration, 2012, 122(1): 1-3.
[8] Zuo R, Xia Q, Zhang D. A comparison study of the C-A and S-A models with singularity analysis to identify geochemical anomalies in covered areas[J].Applied Geochemistry, 2013, 33(6):165-172.
[9] 陈永清,张生元,夏庆霖,等. 应用多重分形滤波技术提取致矿地球化学异常:以西南"三江"南段Cu、Zn致矿异常提取为例[J]. 地球科学, 2006,31(6)::861-866.
[10] 成秋明. 应用复杂性—非线性理论开展成矿预测——奇异性理论—广义自相似性—分形谱系多重分形理论与应用[C]//第八届全国矿床会议, 2006:463-466.
[11] 申维. 分形不变分布及其在山东地区金矿床中的应用[J]. 地学前缘, 2008,15(4):65-70.
[12] 谢淑云,鲍征宇. 多重分形与地球化学元素的分布规律[J]. 地质地球化学, 2003,31(3):97-102.
[13] 成秋明. 多维分形理论和地球化学元素分布规律[J]. 地球科学:中国地质大学学报, 2000,25(3): 311-318.
[14] 李晓晖,袁峰,贾蔡,等. 基于多维分形模型与指示克里格方法的地球化学异常识别研究[J]. 地理与地理信息科学, 2011,27(6): 23-27.
[15] Zuo R. Identification of weak geochemical anomalies using robust neighborhood statistics coupled with GIS in covered areas[J]. Journal of Geochemical Exploration, 2014, 136(1): 93-101.
[16] Zuo R, Wang J, Chen G, et al. Identification of weak anomalies: A multifractal perspective[J].Journal of Geochemical Exploration, 2014, 154:12-24.
[17] Zuo R. Identifying geochemical anomalies associated with Cu and Pb-Zn skarn mineralization using principal component analysis and spectrum-area fractal modeling in the Gangdese Belt, Tibet (China)[J].Fuel & Energy Abstracts, 2011, 111(1):13-22.
[18] 白晓宇,袁峰,周涛发,等. 多重分形方法识别铜陵矿区土壤中Cd的地球化学异常[J]. 矿物岩石地球化学通报, 2008,27(3): 306-310.
[19] 柯贤忠,谢淑云,高顺宝,等. 西藏班戈地区化探数据的多重分形特征及其成矿意义[J]. 地质科技情报, 2015,34(1):148-153.
[20] 陈建国,王仁铎,陈永清. 利用分形统计学提取化探数据中的隐蔽信息并圈定地球化学异常[J]. 地球科学:中国地质大学学报, 1998,23(2):175-178.
[21] 成秋明,赵鹏大,陈建国,等. 奇异性理论在个旧锡铜矿产资源预测中的应用:成矿弱信息提取和复合信息分解[J]. 地球科学:中国地质大学学报, 2009,34(2): 232-242.
[22] 成秋明. 非线性成矿预测理论:多重分形奇异性-广义自相似性-分形谱系模型与方法[J]. 地球科学:中国地质大学学报, 2006,31(3): 337-348.
[23] 毛华海,张哲儒. 分形理论与成矿作用[J]. 地学前缘, 2000,7(1):195-204.
[24] Asadi H H, Kianpouryan S, Lu Y, et al. Exploratory data analysis and C-A fractal model applied in mapping multi-element soil anomalies for drilling: A case study from the Sari Gunay epithermal gold deposit, NW Iran[J]. Journal of Geochemical Exploration, 2014, 145: 233-241.
[25] 张磊,申维. 分形方法在澳大利亚新南威尔士地区地球化学异常下限确定中的应用[J]. 地质通报, 2009,28(2): 245-249.
[26] Ke X, Xie S, Zheng Y, et al. Multifractal analysis of geochemical stream sediment data in Bange Region, northern Tibet[J]. Journal of Earth Science, 2015, 26(3):317-327.
[27] Afzal P, Harati H, Fadakar Alghalandis Y, et al. Application of spectrum-area fractal model to identify of geochemical anomalies based on soil data in Kahang porphyry-type Cu deposit, Iran[J]. Chemie der Erde-Geochemistry, 2013, 73(4): 533-543.
[28] Zuo R, Xia Q, Zhang D. A comparison study of the C-A and S-A models with singularity analysis to identify geochemical anomalies in covered areas[J]. Applied Geochemistry, 2013, 33(6): 165-172.
[29] Zuo R, Cheng Q, Xia Q. Application of fractal models to characterization of vertical distribution of geochemical element concentration[J]. Journal of Geochemical Exploration, 2009, 102(1): 37-43.
[30] Zuo R, Cheng Q, Agterberg F P, et al. Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China[J]. Journal of Geochemical Exploration, 2009, 101(3): 225-235.
[31] Zuo R. Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China[J]. Applied Geochemistry, 2011, 26(3): S271-S273.
[32] 查显锋,辜平阳,计文化,等. 欧龙布鲁克地块西段达肯大坂岩群物质组成及变形特征研究[J]. 地质科学, 2013,48(4): 1103-1114.
[33] 陈鑫, 郑有业, 许荣科,等. 柴北缘超高压变质带折返过程对金红石成矿的制约:来自鱼卡和铁石观西地区石榴石成分环带的证据[J]. 地球科学与环境学报, 2016,38(2):143-159.
[34] 陈鑫,许荣科,郑有业,等. 青海柴北缘UHP变质带铁石观西榴辉岩峰期温度的确定及其地质意义[J]. 地质通报,2015,34(12):2292-2301.
[35] 张雪亭. 青海省大地构造格架研究[D]. 北京:中国地质大学, 2006.
[36] Cheng Q. Non-linear theory and power-law models for?Information integration and mineral resources quantitative assessments[J]. Mathematical Geosciences, 2008, 40(5): 503-532.
[37] 蒋敬业. 应用地球化学[M]. 武汉:中国地质大学出版社有限责任公司, 2013.
[38] 黎彤. 中国陆壳及其沉积层和上陆壳的化学元素丰度[J]. 地球化学, 1994(2): 140-145.
[39] 姜振宁. 地球化学数据处理方法比较[D]. 石家庄:石家庄经济学院, 2012.
[40] 赵江南,陈守余,左仁广. 个旧锡多金属矿集区高松矿田矿化元素局部富集的奇异性特征[J]. 吉林大学学报:地球科学版, 2012(S1): 216-223.
[41] Zuo R. Exploring the effects of cell size in geochemical mapping[J]. Journal of Geochemical Exploration, 2012, 112(1): 357-367.
[42] 成秋明,张生元,左仁广,等. 多重分形滤波方法和地球化学信息提取技术研究与进展[J]. 地学前缘, 2009,16(2): 185-198.
[43] 陈永清, 张生元, 夏庆霖,等. 应用多重分形滤波技术提取致矿地球化学异常:以西南"三江"南段Cu、Zn致矿异常提取为例[J]. 地球科学:中国地质大学学报, 2006, 31(6):861-866.
[44] 李随民,姚书振. 基于MAPGIS的分形方法确定化探异常[J]. 地球学报, 2005,26(2): 187-190.
[45] Zuo R, Agterberg F P, Cheng Q, et al. Fractal characterization of the spatial distribution of geological point processes[J]. International Journal of Applied Earth Observation and Geoinformation, 2009, 11(6): 394-402.
[46] Singer D A, Kouda R. Some simple guides to finding useful information in exploration geochemical data[J]. Natural Resources Research, 2001, 10(2): 137-147.
[47] Cheng Q. GeoData analysis system (GeoDAS) for mineral exploration: unpublished User's guide and exercise manual[C]//Material for the Training Workshop on GeoDAS,York University, 2000.

[1] 王斌, 罗彦军, 孟广路, 张晶, 张海迪, 陈博, 何子鑫. 吉尔吉斯斯坦Au、Cu、Pb、Zn、W、Sn矿床潜力评价——基于1∶100万地球化学数据[J]. 物探与化探, 2022, 46(1): 58-69.
[2] 赵泽霖, 李俊建, 张彤, 倪振平, 彭翼, 宋立军. 华北地区稀土矿床特征及找矿方向[J]. 物探与化探, 2022, 46(1): 46-57.
[3] 李建亭, 刘雪敏, 王学求, 韩志轩, 江瑶. 地表土壤微细粒测量中微量元素和同位素对福建罗卜岭隐伏铜钼矿床的示踪与判别[J]. 物探与化探, 2022, 46(1): 32-45.
[4] 孟伟, 莫春虎, 刘应忠. 黔西北地区土壤重金属地球化学背景及管理目标值[J]. 物探与化探, 2022, 46(1): 250-257.
[5] 赵筱媛, 杨忠芳, 程惠怡, 马旭东, 王珏, 李志坤, 王琛, 李明辉, 雷风华. 四川邻水县华蓥山—西槽土壤Cu地球化学特征与生态健康[J]. 物探与化探, 2022, 46(1): 238-249.
[6] 王志强, 杨建锋, 魏丽馨, 石天池, 曹园园. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237.
[7] 邹雨, 王国建, 杨帆, 陈媛. 含油气盆地甲烷微渗漏及其油气勘探意义研究进展[J]. 物探与化探, 2022, 46(1): 1-11.
[8] 方永坤, 曹成刚, 董峻麟, 李领贵. 青海省天峻县阳康地区花岗岩岩体锆石U-Pb年代学及地球化学特征研究[J]. 物探与化探, 2021, 45(6): 1367-1377.
[9] 庞文静, 陈贝贝, 周涛, 黄柔睿, 周云云, 郭福生, 吴志春, 谢财富. 相山矿田与冷水坑矿田多金属成矿特征对比[J]. 物探与化探, 2021, 45(6): 1416-1424.
[10] 唐瑞, 欧阳菲, 罗先熔, 郑超杰, 汤国栋, 刘攀峰, 蔡叶蕾, 杨笑笑. 相山矿田游坊地区地电提取找矿预测[J]. 物探与化探, 2021, 45(6): 1425-1438.
[11] 张春来, 杨慧, 黄芬, 曹建华. 广西马山县岩溶区土壤硒含量分布及影响因素研究[J]. 物探与化探, 2021, 45(6): 1497-1503.
[12] 杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 2021, 45(5): 1147-1156.
[13] 奚小环, 侯青叶, 杨忠芳, 叶家瑜, 余涛, 夏学齐, 成杭新, 周国华, 姚岚. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108.
[14] 刘道荣, 焦森. 天然富硒土壤成因分类研究及开发适宜性评价[J]. 物探与化探, 2021, 45(5): 1157-1163.
[15] 胡斌, 李广之. 油气化探分析测试质量监控与评估方法探讨[J]. 物探与化探, 2021, 45(4): 1043-1047.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com