Please wait a minute...
E-mail Alert Rss
 
物探与化探  2016, Vol. 40 Issue (3): 541-549    DOI: 10.11720/wtyht.2016.3.16
  方法技术研究 本期目录 | 过刊浏览 | 高级检索 |
各向异性页岩储层脆性特征分析
张晓语1, 杜启振1, 马中高2, 李呈呈2, 赵强1
1. 中国石油大学(华东) 地球科学与技术学院, 山东 青岛 266580;
2. 中国石化石油物探技术研究院, 江苏 南京 211103
Brittleness characteristics of anisotropic shale reservoirs
ZHANG Xiao-Yu1, DU Qi-Zhen1, MA Zhong-Gao2, LI Cheng-Cheng2, ZHAO Qiang1
1. College of Earth Science and Technology, China University of Petroleum(East China) , Qingdao 266580, China;
2. Academy of Geophysical Exploration Technology, SINOPEC, Nanjing 211103, China
全文: PDF(5846 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

针对页岩脆性各向异性特征的研究相对薄弱,亟待发展与之相应的页岩储层脆性研究。为实现页岩脆性指数的表征,基于多尺度建模思想,引入各向异性元依次建立纳米级多孔黏土颗粒、亚微米级富有机质黏土颗粒和微米级干岩石骨架,并综合考虑吸附气、束缚水等影响因素,改进了常规基于DEM理论及Gassmann理论的建模流程,建立了页岩储层等效介质模型并实现了弹性参数的表征。然后,引入方位角的影响,依据Bond变换推导得到了杨氏模量、泊松比等脆性指数各向异性表达式,实现了以等效介质模型弹性模量为参数的脆性参数表征。最后,总结了页岩储层脆性的各向异性特征以及页岩储层脆性对矿物组分的敏感性,发现平行于储层走向且垂直于层理方向上的脆性是垂直于储层走向且与层理45°夹角时的2.5倍;同时,脆性对石英的敏感强度约为黏土的2倍。该特征研究可以为储层脆性预测及水力压裂方案设定提供参考依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

Since the study of the brittleness anisotropy for shale rocks is relatively rare, it is necessary to study the corresponding brittleness characteristics of the shale reservoir. Therefore, the authors construct an effective medium model to link elastic properties and brittleness index of shales to complex constituents and specific microstructures. Based on upscaling modeling, the authors sequently construct the nano-porous clay composite, submicron organic-rich clay composite and micron dry rock matrix by introducing clay particles. In consideration of the factors such as bound water and adsorbed gas in nanopores, the authors construct an effective medium model of shale reservoirs to characterize the elastic parameters, which improves the construction process based on DEM and Gassmann theory. Then, the anisotropic expressions of Young's module and Poisson's ratio based on elastic modulus parameters are derived by using the transition matrixes M and Bond conversion. Finally, the anisotropy features of shale rock's brittleness and the seismic response are summarized with different mineral constituents. Brittleness analysis shows that the brittleness in the direction that is parallel to the strike and perpendicular to the bedding is 2.5 times that perpendicular to strike and inclined to bedding at a 45 degree and the rock brittleness has increased, which suggests that the rock is more likely to fracture with increasing quartz content and decreasing clay content. These results provide a reference for predicting reservoirs' brittleness and designing hydraulic fracturing.

收稿日期: 2015-08-05      出版日期: 2016-06-10
:  P631.4  
基金资助:

国家自然科学基金项目(41174100、41074087),国家科技重大专项(2011ZX05014-004-003HZ),中国石油天然气集团公司项目(2014A-3609)联合资助

通讯作者: 杜启振(1969-),教授、博士生导师,研究方向为弹性波传播与成像。E-mail:multi-wave@163.com
作者简介: 张晓语(1991-),在读硕士,研究方向为地震波响应特征分析。
引用本文:   
张晓语, 杜启振, 马中高, 李呈呈, 赵强. 各向异性页岩储层脆性特征分析[J]. 物探与化探, 2016, 40(3): 541-549.
ZHANG Xiao-Yu, DU Qi-Zhen, MA Zhong-Gao, LI Cheng-Cheng, ZHAO Qiang. Brittleness characteristics of anisotropic shale reservoirs. Geophysical and Geochemical Exploration, 2016, 40(3): 541-549.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2016.3.16      或      https://www.wutanyuhuatan.com/CN/Y2016/V40/I3/541

[1] 孙赞东,贾承造,李相方.非常规油气勘探与开发[M].北京:石油工业出版社, 2011.
[2] Hornby B E,Schwartz L M,Hudson J A.Anisotropic effective-medium modeling of the elastic properties of shales[J].Geophysics, 1994, 59(10): 1570-1583.
[3] Jakobsen M,Johansen T A.Anisotropic approximations for mudrocks:A seismic laboratory study[J].Geophysics, 2000, 65(6): 1711-1725.
[4] Jakobsen M,Hudson J A,Johansen T A.T-matrix approach to shale acoustics[J].Geophysical Journal International, 2003, 154(2): 533-558.
[5] Ortega J A,Ulm F J,Abousleiman Y.The effect of the nanogranular nature of shale on their poroelastic behavior[J].Acta Geotechnica,2007,2(3): 155-182.
[6] Ortega J A,Ulm F J,Abousleiman Y.The nanogranular acoustic signature of shale[J].Geophysics,2009,74(3):D65-D84.
[7] Grigg M.Emphasis on mineralogy and basin stress for gas shale exploration[C]//SPE Meeting on Gas Shale Technology Exchange,2004.
[8] Goodway B,Perez M,Varsek J,et al.Seismic petrophysics and isotropic-anisotropic AVO methods for unconventional gas exploration[J].The Leading Edge,2010,29(12):1500-1508.
[9] Norton M,Hovdebo W,Cho D,et al.Surface seismic to microseismic:An integrated case study from exploration to completion in the Montney shale of NE British Columbia,Canada[J].Seg Expanded Abstracts, 2010, (1):2095.
[10] Guo Z Q,Li X Y,Liu C,et al.A shale rock physics model for analysis of brittleness index,mineralogy and porosity in the Barnett Shale[J].Journal of Geophysics & Engineering,2013,10(2):25006-25015(10).
[11] 董宁,许杰,孙赞东,等.泥页岩脆性地球物理预测技术[J].石油地球物理勘探,2013,48(1):69-74.
[12] Brown R J S,Korringa J.On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid[J].Geophysics,1975,40(4):608-616.
[13] 刘雯林.煤层气地球物理响应特征分析[J].岩性油气藏,2009,21(2).
[14] Berryman J G.Long-wavelength propagation in composite elastic media II:Ellipsoidal inclusions[J].The Journal of the Acoustical Society of America, 1980, 68(6): 1820-1831.
[15] Norris A N.A differential scheme for the effective moduli of composites[J].Mechanics of materials,1985,4(1): 1-16.
[16] Lin S C,Mura T.Elastic fields of inclusions in anisotropic media (II)[J].Physica status solidi (a),1973,15(1):281-285.
[17] 牛滨华,何樵登,孙春岩.六方各向异性介质方位矢量波动方程及其相速度[J].石油物探,1994,33(1):19-29.
[18] Luan X,Di B,Wei J,et al.Laboratory measurements of brittleness anisotropy in synthetic shale with different cementation[J].SEG Technical Program Expanded Abstrct,2014:3005-3009.

[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[3] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[4] 刘仕友, 张明林, 宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探, 2022, 46(1): 114-122.
[5] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[6] 芮拥军, 尚新民. 胜利油田非一致性时移地震关键技术探索与实践[J]. 物探与化探, 2021, 45(6): 1439-1447.
[7] 王飞, 孙亚杰, 裴金梅, 宋建国, 李文建. 高密度单点接收地震采集数据的处理方法讨论[J]. 物探与化探, 2021, 45(6): 1469-1474.
[8] 刘兰锋, 尹龙, 黄捍东, 周振亚, 董金超. 一种基于岩石物理建模的横波预测方法[J]. 物探与化探, 2021, 45(6): 1482-1487.
[9] 徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6): 1512-1519.
[10] 张豪, 辛勇光, 田瀚. 基于双相介质理论预测川西北地区雷口坡组储层含气性[J]. 物探与化探, 2021, 45(6): 1386-1393.
[11] 韦红, 白清云, 张鹏志, 甄宗玉. 基于反褶积广义S变换的双相介质理论油水识别法在渤海S油田馆陶组的应用[J]. 物探与化探, 2021, 45(6): 1394-1401.
[12] 魏岩岩, 吴磊, 周道卿, 肖安成, 黄凯. 柴达木盆地西部阿拉尔断裂新生代构造变形特征及意义[J]. 物探与化探, 2021, 45(5): 1171-1178.
[13] 张振宇, 袁桂琴, 孙跃, 王之峰. 地质调查地球物理技术标准现状与发展趋势[J]. 物探与化探, 2021, 45(5): 1226-1230.
[14] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[15] 雍凡, 刘子龙, 蒋正中, 罗水余, 刘建生. 城市三维地震资料处理浅层成像关键技术[J]. 物探与化探, 2021, 45(5): 1266-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com