Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (6): 1319-1332    DOI: 10.11720/wtyht.2025.0115
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于深度学习的零井源距VSP上、下行波分离方法
王腾宇1,2,3(), 邓丁丁4(), 郑多明1,2,3, 刘洋4, 张振1, 罗文君5
1.中国石油天然气股份有限公司 塔里木油田分公司勘探开发研究院, 新疆 库尔勒 841000
2.中国石油天然气集团有限公司 超深层复杂油气藏勘探开发技术研发中心, 新疆 库尔勒 841000
3.新疆维吾尔自治区超深层复杂油气藏勘探开发工程研究中心, 新疆 库尔勒 841000
4.中国石油大学(北京) 油气资源与工程全国重点实验室, 北京 102249
5.北京博豪罗根石油技术有限公司, 北京 100085
A deep learning-based method for separating up- and down-going waves in zero-offset vertical seismic profiles
WANG Teng-Yu1,2,3(), DENG Ding-Ding4(), ZHENG Duo-Ming1,2,3, LIU Yang4, ZHANG Zhen1, LUO Wen-Jun5
1. Research Institute of Exploration and Development, Tarim Oilfield Company, PetroChina, Korla 841000, China
2. R&D Center for Ultra-Deep Complex Reservoir Exploration and Development, CNPC, Korla 841000, China
3. Engineering Research Center for Ultra-deep Complex Oil and Gas Reservoir Exploration and Development, Xinjiang Uygur Autonomous Region, Korla 841000, China
4. State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China
5. Beijing Borehole Logging Petroleum Technology Co., Ltd., Beijing 100085, China
全文: PDF(10274 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

波场分离是垂直地震剖面(VSP)数据处理的关键步骤,其精度直接影响地震成像、弹性参数反演、岩性识别和含油气性解释的精度。中值滤波分离波场时需要人工操作,往往会造成误差,影响波场分离的精度;FK滤波方法分离精度高,但效率低;深度学习技术的自动化程度更高,可以实现高精度、高效率的波场分离。本文提出了一种基于深度学习进行VSP数据上、下行波分离的方法。首先,利用FK变换对零井源距VSP数据进行上、下波分离以制作数据集;然后,构建了一种用于分离VSP上、下行波的深度学习模型——Unet++;最后,为了减轻上、下行波振幅差异对网络更新的影响,在损失函数中加入了相对下行波场(通过从全波场中减去预测的上行波场得到),同时引入结构性相似指数作为正则化约束来辅助网络学习波场的结构特征。实际数据测试结果表明,训练后的网络可以有效地学习到上、下行波的特征,可实现高精度、高效率的波场分离。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王腾宇
邓丁丁
郑多明
刘洋
张振
罗文君
关键词 深度学习波场分离垂直地震剖面(VSP)Unet++    
Abstract

Wavefield separation serves as a key step in processing the data of vertical seismic profiles (VSPs). Its accuracy directly influences seismic imaging, inversion of elastic parameters, lithology identification, and interpretation of hydrocarbon-bearing properties. Traditional methods face challenges in wavefield separation. For example, the median filtering requires manual intervention, often introducing errors and thus compromising separation accuracy; the FK filtering yields high accuracy but low efficiency. In contrast, deep learning techniques offer high automation, enabling both high accuracy and efficiency in wavefield separation. Hence, this study proposed a deep learning-based method for separating up- and down-going waves in zero-offset VSPs. First, the up- and down-going waves were separated through FK transform, generating a dataset. Second, a deep learning-based model, Unet++, was constructed for separating these waves in VSPs. Third, the relative down-going wavefield (obtained by subtracting the predicted up-going wavefield from the full wavefield) was incorporated into the loss function to mitigate the impacts of amplitude differences between up- and down-going waves on network updates. Moreover, the structural similarity index measure (SSIM) was employed as a regularization constraint to assist the network in learning the structural characteristics of the wavefield. The test results of actual VSP data demonstrate that the trained network can effectively learn the characteristics of the up- and down-going waves, achieving high accuracy and efficiency in wavefield separation.

Key wordsdeep learning    wavefield separation    vertical seismic profile (VSP)    Unet++
收稿日期: 2025-04-01      修回日期: 2025-08-08      出版日期: 2025-12-20
ZTFLH:  P631.4  
基金资助:中石油塔里木项目“超深层井中地震与重磁电研究”(YF202401.01.05)
通讯作者: 邓丁丁
引用本文:   
王腾宇, 邓丁丁, 郑多明, 刘洋, 张振, 罗文君. 基于深度学习的零井源距VSP上、下行波分离方法[J]. 物探与化探, 2025, 49(6): 1319-1332.
WANG Teng-Yu, DENG Ding-Ding, ZHENG Duo-Ming, LIU Yang, ZHANG Zhen, LUO Wen-Jun. A deep learning-based method for separating up- and down-going waves in zero-offset vertical seismic profiles. Geophysical and Geochemical Exploration, 2025, 49(6): 1319-1332.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.0115      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I6/1319
Fig.1  Marmousi模型
Fig.2  基于数据驱动深度学习的VSP上、下行波分离流程
Fig.3  A区部分VSP数据的分块(同一颜色表示相同的振幅值)
井号 分块前 分块后
M1~M10 10×(3381, 316) 10×(335, 128, 128)
w1 (5001, 388) (693, 128, 128)
w2 (6001, 407) (833, 128, 128)
w3 (6001, 337) (714, 128, 128)
w4 (5001, 677) (1188, 128, 128)
Table 1  合成数据集和A区零井源距VSP数据分块前、后的维度
Fig.4  Unet网络结构示意
Fig.5  Unet++网络结构示意(a)及其第一次跳跃路径的详细分析(b)
Fig.6  模型学习曲线
Fig.7  M1零井源距合成VSP数据及上、下行波标签
Fig.8  M1零井源距合成VSP数据在常规损失和加入相对下行波场损失条件下的Unet波场分离结果对比
Fig.9  常规损失和加入相对下行波场损失Unet波场分离结果与标签的残差对比
Fig.10  M1零井源距合成VSP数据在常规损失和加入相对下行波场损失条件下的Unet++波场分离结果对比
Fig.11  常规损失和加入相对下行波场损失Unet++波场分离结果与标签的残差对比
Fig.12  A区w1零井源距VSP数据在不同深度学习模型的波场分离结果对比
Fig.13  不同深度学习模型波场分离结果的FK谱
Fig.14  不同深度学习模型波场分离结果与标签的残差对比
FK滤波 Unet Unet++
占用显存/MiB - 5874 15114
耗时/s 258.8 81.2 110.4
Table 2  A区不同方法的波场分离计算成本
Fig.15  A区w4零井源距VSP数据在不同方法的波场分离结果对比
Fig.16  不同方法波场分离结果的FK谱
Fig.17  A区w4零井源距VSP数据在不同方法的多道波形对比
[1] 胡东海, 杨少辉, 闫有平, 等. VSP资料地震属性的提取和应用[J]. 石油物探, 2004, 43(S1):83-85.
[1] Hu D H, Yang S H, Yan Y P, et al. Extraction and application of seismic attributes from VSP data[J]. Geophysical Prospecting for Petroleum, 2004, 43(S1):83-85.
[2] Suprajitno M, Greenhalgh S A. Separation of upgoing and downgoing waves in vertical seismic profiling by contour-slice filtering[J]. Geophysics, 1985, 50(6):950-962.
[3] Wang X K, Chen J Y, Gao L, et al. An iterative zero-offset VSP wavefield separating method based on the error analysis of SVD filtering[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(8):1164-1168.
[4] Matsushima J, Ali M Y, Bouchaala F. A novel method for separating intrinsic and scattering attenuation for zero-offset vertical seismic profiling data[J]. Geophysical Journal International, 2017, 211(3):1655-1668.
[5] Gao L, Chen W C, Wang B L, et al. VSP wave field separation:An optimization method based on block relaxation and singular value thresholding[J]. Journal of Applied Geophysics, 2014, 104:156-162.
[6] Jin C, Cao D P, Yin X Y. Joint waveform inversion with the separated upgoing and downgoing wavefields of VSP data[J]. Journal of Geophysics and Engineering,2019:gxz086.
[7] Huang T, Yang G, Tang G. A fast two-dimensional Median filtering algorithm[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing, 1979, 27(1):13-18.
[8] Duncan G, Beresford G. Some analyses of 2-D median F-K filters[J]. Geophysics, 1995, 60(4):1157-1168.
[9] Moon W, Carswell A, Tang R, et al. Radon transform wave field separation for vertical seismic profiling data[J]. Geophysics, 1986, 51(4):940-947.
[10] 闵超, 文国权, 李小刚, 等. 可解释机器学习在油气领域人工智能中的研究进展与应用展望[J]. 天然气工业, 2024, 44(9):114-126.
[10] Min C, Wen G Q, Li X G, et al. Research progress and application prospect of interpretable machine learning in artificial intelligence in oil and gas industry[J]. Natural Gas Industry, 2024, 44(9):114-126.
[11] 郭子熙, 马骉, 张帅, 等. 深度学习在油气产量预测中的研究进展与技术展望[J]. 天然气工业, 2024, 44(9):88-98.
[11] Guo Z X, Ma B, Zhang S, et al. Research status and prospects of deep learning in oil and gas production prediction[J]. Natural Gas Industry, 2024, 44(9):88-98.
[12] Wang B F, Zhang N, Lu W K, et al. Deep-learning-based seismic data interpolation:A preliminary result[J]. Geophysics, 2018, 84(1):V11-V20.
[13] Di H B, Li Z, Maniar H, et al. Seismic stratigraphy interpretation by deep convolutional neural networks:A semisupervised workflow[J]. Geophysics, 2020, 85(4):WA77-WA86.
[14] Cui R A, Cao D P, Liu Q, et al. VP and VS prediction from digital rock images using a combination of U-Net and convolutional neural networks[J]. Geophysics, 2021, 86(1):MR27-MR37.
[15] Cova D, 刘洋, 丁成震, 等. 人工智能和视速度约束的地震波初至拾取方法[J]. 石油地球物理勘探, 2021, 56(3):419-435,409.
[15] Cova D, Liu Y, Ding C Z, et al. First break picking method based on artificial intelligence and apparent velocity constraint[J]. Oil Geophysical Prospecting, 2021, 56(3):419-435,409.
[16] Han S, Liu Y J, Li Y B, et al. First arrival traveltime picking through 3-D U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19:8016405.
[17] Wang W L, McMechan G A, Ma J W, et al. Automatic velocity picking from semblances with a new deep-learning regression strategy:Comparison with a classification approach[J]. Geophysics, 2021, 86(2):U1-U13.
[18] Sun J, Slang S, Elboth T, et al. A convolutional neural network approach to deblending seismic data[J]. Geophysics, 2020, 85(4):WA13-WA26.
[19] Wang S R, Hu W Y, Yuan P Y, et al. A self-supervised deep learning method for seismic data deblending using a blind-trace network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(7):3405-3414.
[20] Feng Q K, Li Y. Denoising deep learning network based on singular spectrum analysis—DAS seismic data denoising with multichannel SVDDCNN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5902911.
[21] Zhang M, Liu Y, Bai M, et al. Seismic noise attenuation using unsupervised sparse feature learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12):9709-9723.
[22] Deng D D, Liu Y, et al. A wavefield decomposition-guided deep-learning framework for removing smearing artifacts from VSP RTM[J]. Journal of Geophysics and Engineering, 2025, 22(4):1085-1095.
[23] 孙宇航, 刘洋, 陈天胜. 基于无监督深度学习的多波AVO反演及储层流体识别[J]. 石油物探, 2021, 60(3):385-394,413.
[23] Sun Y H, Liu Y, Chen T S. Multi-wave amplitude-versus-offset inversion and reservoir fluid identification based on unsupervised deep learning[J]. Geophysical Prospecting for Petroleum, 2021, 60(3):385-394,413.
[24] Sun Y H, Liu Y, Zhang M, et al. Inversion of low- to medium-frequency velocities and densities from AVO data using invertible neural networks[J]. Geophysics, 2022, 87(3):A37-A42.
[25] Zhang H R, Chen T S, Liu Y, et al. Automatic seismic facies interpretation using supervised deep learning[J]. Geophysics, 2021, 86(1):IM15-IM33.
[26] Tao B C, Yang Y Y, Zhou H L, et al. Deep learning-based upgoing and downgoing wavefield separation for vertical seismic profile data[J]. Geophysics, 2023, 88(6):D339-D355.
[27] Cao D P, Chen X, Jia Y, et al. Upgoing and downgoing wavefield separation in VSP data using CGAN based on asymmetric convolution blocks[J]. Journal of Geophysics and Engineering, 2024, 21(5):1511-1525.
[28] Zhou Z W, Siddiquee M M R, Tajbakhsh N, et al. UNet++:Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6):1856-1867.
[29] Huber P J. Robust regression:Asymptotics,conjectures and Monte Carlo[J]. The Annals of Statistics, 1973, 1(5):799-821.
[30] Zhang Y F, Thorburn P J, Xiang W, et al. SSIM: A deep learning approach for recovering missing time series sensor data[J]. IEEE Internet of Things Journal, 2019, 6(4):6618-6628.
[1] 李国豪, 吕玉增, 董一凡, 于海涛. 基于正演约束的高密度电法半监督学习反演[J]. 物探与化探, 2025, 49(3): 661-669.
[2] 张猛. 地震资料处理中油井抽油机噪声干扰智能检测与压制方法[J]. 物探与化探, 2025, 49(2): 378-384.
[3] 葛大明. 基于深度学习的二维斜率层析反演模型误差校正方法[J]. 物探与化探, 2025, 49(2): 385-393.
[4] 李博, 李长伟, 罗润林, 吕玉增, 王占. 基于VMD-LSTM对大地电磁信号进行噪声检测和预测重构[J]. 物探与化探, 2025, 49(1): 100-117.
[5] 单博, 邢宇鑫, 张繁昌, 李志伟, 陈默. 基于二次编解码网络的适应性叠前反演方法[J]. 物探与化探, 2025, 49(1): 158-165.
[6] 赵丽芳, 喻思羽, 李少华. 基于深度学习的变差函数自动拟合方法研究[J]. 物探与化探, 2024, 48(5): 1359-1367.
[7] 姚禹, 张志厚. 基于改进DenseNet的大地电磁智能反演[J]. 物探与化探, 2024, 48(3): 759-767.
[8] 杨凯, 刘诚, 贺景龙, 李含, 姚川. 基于人工神经网络的大地电磁时序分类研究[J]. 物探与化探, 2024, 48(2): 498-507.
[9] 李沐思, 陈丽蓉, 谢飞, 谷兰丁, 吴晓栋, 马芬, 尹兆峰. 面向地球化学异常识别的深度学习算法对比研究[J]. 物探与化探, 2023, 47(1): 179-189.
[10] 杨凯, 唐卫东, 刘诚, 贺景龙, 姚川. 基于LSTM循环神经网络的大地电磁方波噪声抑制[J]. 物探与化探, 2022, 46(4): 925-933.
[11] 吴国培, 张莹莹, 张博文, 赵华亮. 基于深度学习的中心回线瞬变电磁全区视电阻率计算[J]. 物探与化探, 2021, 45(3): 750-757.
[12] 张勇, 马晓东, 李彦婧, 蔡景顺. 深度学习在南川页岩气含气量预测中的应用[J]. 物探与化探, 2021, 45(3): 569-575.
[13] 梁立锋, 刘秀娟, 张宏兵, 陈程浩, 陈锦华. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1): 133-139.
[14] 王逸宸, 柳林涛, 许厚泽. 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44(2): 394-400.
[15] 查欣洁, 王伟, 高星. 拟VSP与克希霍夫偏移法在隧道超前预报中的应用[J]. 物探与化探, 2016, 40(1): 214-219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com